首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一 S2恒为1,求
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一 S2恒为1,求
admin
2021-01-19
100
问题
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
一 S
2
恒为1,求此曲线y=y(x)的方程.
选项
答案
曲线y=y(x)上点P(x,y)处切线方程为 y 一y=y’(x)(X一x) 它与x轴的交点为[*] 由于y’(x>0,y(0)=1,从而y(x)>0,于是 [*] 又 S
2
=∫
0
x
y(t) dt 由条件2S
1
一S
2
=1知 [*]一
1
y(t)dt=1 (*) 两边对x求导并化简得 yy"=(y’)
2
令P=y’,则上述方程可化为 [*]=P
2
从而 [*] 解得 P=C
1
y, 即 [*]=C
1
y 于是 [*] 注意到y(0)=1,并由(*)式知y’(0)=1.从而可知C
1
=1,C
2
=0,故所求曲线的方程是y=e
x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/yu84777K
0
考研数学二
相关试题推荐
计算二重积分dxdy,其中D为平面区域{(x,y)|x2+y2≤2x,x≥1}。
若函数在处取得极值,则a=__________.
已知矩阵的特征值的和为3,特征值的乘积是一24,则b=______。
设f(x,y)连续,且,x=1,y=2所围区域,则f(x,y)=_________.
设三阶矩阵三维列向量α=(a,1,1)T.已知Aα与α线性相关,则a=_______
函数f(x,y)=x2y(4一x一y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的最小值是___________.
设函数f(x)在x0处具有二阶导数,且f’(x0)=0,f’’(x0)≠0,证明当f’’(x0)>0,f(x)在x0处取得极小值。
设x1=10,xn+1=(n=1,2,…),试证数列{xn}极限存在,并求此极限.
[2005年]设A为n(n≥2)阶可逆矩阵,交换A的第l行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则().
[2005年]已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1,x2的秩为2.求方程f(x1,x2,x3)=0的解.
随机试题
下列说法有几个属于现场监理工程师的决定权的内容?()(1)在工程承包合同议定的价格范围内,工程款支付的审核、签订(2)结算工程款的复核权(3)对索赔事项的审核、确认(4)发布工程施工的开工令、停工令、
硫酸阿托品的反应盐酸吗啡的反应
材料一(案情):孙某与村委会达成在该村采砂的协议,期限为5年。孙某向甲市乙县国土资源局申请采矿许可,该局向孙某发放采矿许可证,载明采矿的有效期为2年,至2015年10月20日止。2015年10月15日,乙县国土资源局通知孙某,根据甲市国土资源局日
在建设项目各类招标中,不要求投标人依据给定工作量报价的是( )招标。
下列不能用现金支付的是()。
商业汇票包括()。
一个期权交易指令包括()。
()神庙是古希腊雅典卫城建筑群中的主要建筑,是世界艺术史上最完美的建筑典范之一。
在用来发射卫星的火箭头部涂了一层特殊的物质。这种物质可以避免火箭因高速运动与空气作用产生高温而被毁坏的危险。这种材料能起这种作用的主要原因是()。
下列关于数据仓库的叙述中,哪一个是不正确的
最新回复
(
0
)