首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=O的两个解. 求A的特征值与特征向量;
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=O的两个解. 求A的特征值与特征向量;
admin
2013-12-27
92
问题
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=O的两个解.
求A的特征值与特征向量;
选项
答案
因为矩阵A的各行元素之和均为3,所以有[*]由特征值和特征向量的定义知,λ=3是矩阵A的特征值,α=(1,1,1)
T
是对应的特征向量,全部的特征向最为kα,其中k是不为零的常数;又依题设知,Aα
1
=0,Aα
2
=0,且α
1
与α
2
线性无关,所以λ=0是矩阵A的二重特征值,α
1
,α
2
是其对应的特征向量,对应的全部特征向量为k
1
α
1
+k
2
α
2
,其中k
1
,k
2
是不全为零的常数
解析
转载请注明原文地址:https://kaotiyun.com/show/zC54777K
0
考研数学一
相关试题推荐
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
求一组向量α1,α2,使之与α3=(1,1,1)T成为R3的正交基;并把α1,α2,α3化成R3的一个标准正交基.
设向量组α1=(a,3,1)T,α2=(2,b,3)T,α3=(1,2,1)T,α4=(2,3,1)T的秩为2,求a,b的值及该向量组的一个极大线性无关组,并把其余向量用此极大线性无关组线性表示.
设A=,求一个可逆矩阵P,使PA为行最简形矩阵.
求抛物面壳的质量,此抛物面壳的面密度为z
证明方程在(0,+∞)内至少有两个实根.
设y1=e-x,y2=2xe-x,y3=3ex是某三阶常系数齐次线性微分方程的解,试确定该微分方程的形式.
设函数f(x)在开区间(a,b)内可导,证明:当导函数f’(x)在(a,b)内有界时,函数f(x)在(a,b)内也有界.
设(X1,X2,…,Xn)(n≥2)为标准正态总体,X的简单随机样本,则().
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的矩估计量;
随机试题
乔伊斯是______著名作家,欧美意识流小说的代表作家,被尊奉为西方现代主义文学的先驱。
Onlyunderspecialcircumstances______totakemake-uptests.
A.商品名B.通用名C.化学名D.别名E.药品代码在药品命名中,国际非专利药品名称是
在药品生产企业所在地以外的省、自治区、直辖市发布药品广告的,在发布前应向
流动资产的激进融资策略是一种收益性和风险性都较低的融资策略。()
某公司2005年1~4月份预计的销售收入分别为100万元、200万元、300万元和400万元,每月材料采购按照下月销售收入的80%采购,采购当月付现60%,下月付现40%。假设没有其他购买业务,则2005年3月31日资产负债表“应付账款”项目金额和2005
合同文本采用()种以上文字订立并约定具有同等效力的,对各文本使用的词句推定具有相同含义。
一位研究人员希望了解他所在社区的人们喜欢的口味是可口可乐还是百事可乐。他找了些喜欢可乐的人,要他们在一杯可口可乐和一杯百事可乐中,通过品尝指出喜好。杯子上不贴标签,以免商标引发明显的偏见,于是将百事可乐的杯子标志为“1”,将可口可乐的杯子标志为“2”。结
下列选项中哪一项与其他三项所使用的修辞手法不同?()
NeitherSmithnorI______tobeblamedforthat.
最新回复
(
0
)