首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知m个向量α1,…,αm线性相关,但其中任意m-1个向量都线性无关,证明: (Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零; (Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则其
已知m个向量α1,…,αm线性相关,但其中任意m-1个向量都线性无关,证明: (Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零; (Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则其
admin
2017-01-14
32
问题
已知m个向量α
1
,…,α
m
线性相关,但其中任意m-1个向量都线性无关,证明:
(Ⅰ)如果等式k
1
α
1
+…+k
m
α
m
=0成立,则系数k
1
,…,k
m
或者全为零,或者全不为零;
(Ⅱ)如果等式k
1
α
1
+…+k
m
α
m
=0和等式l
1
α
1
+…+l
m
α
m
=0都成立,则
其中l
1
≠0。
选项
答案
(Ⅰ)假设存在某个k
I
=0,则由k
1
α
1
+…+K
m
α
m
=0可得 k
1
α
1
+…+k
i-1
α
i-1
+k
i+1
α
i+1
+…+k
m
α
m
=0。 (1) 因为任意m-1个向量都线性无关,所以必有k
1
=…=k
i-1
=k
i+1
=…=k
m
=0,即系数k
1
,…,k
m
全为零。 所以系数k
1
,…,k
m
或者全为零,或者全不为零。 (Ⅱ)由(Ⅰ)可知,当l
1
≠0时,系数l
1
,…,l
m
全不为零,所以 [*] 将其代入(1)式得 [*] 又因为任意m-1个向量都线性无关,所以[*],即 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/zCu4777K
0
考研数学一
相关试题推荐
已知某股票一年以后的价格X服从对数正态分布,当前价格为10元,且EX=15,DX=4.求其连续复合年收益率的分布.
证明下列函数是有界函数:
某商场以每件a元的价格出售某种商品,若顾客一次购买50件以上,则超出50件的商品以每件0.8а元的优惠价出售,试将一次成交的销售收入R表示成销售量z的函数.
用指定的变量替换法求:
已知函数y=y(x)由方程ey+6xy+x2-1=0确定,则y"(0)=_________.
当a取下列哪个值时,函数,(x)=2x3-9x2+12x-a恰有两个不同的零点.
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:第3把钥匙才打开门
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{丨X丨
已知4阶方阵A=(α1,α2,α2,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α=2α2-aα3,如果β=α1+α2+α3+α
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(一1,0,1)T.求A的其他特征值与特征向量;
随机试题
A、Thewoman’sclassmate.B、Thewoman’sboyfriend.C、Thewoman’sbrother.D、Thewoman’steacher.B此题考点为推断。对话中男士提到约翰正和几个女孩约会。女士答道:
肝硬化最常见的并发症是
桔梗粉末中可见( )。
人力资源供给与需求的不平衡主要有( )等类型。
下列各项中,属于外汇管理法律制度规定的外汇的有()。(2012年)
现有一个关系:借阅(书号,书名,库存数,读者号,借期,还期),假如同一本书允许一个读者多次借阅,但不能同时对一种书借多本。则该关系模式的键是()。
被继承人甲的儿子乙先于甲死亡,现依法由乙的儿子丙代替乙继承甲的遗产,此继承被称为()。
在中国古代四大发明向西方传播的过程中,贡献最大的是()。
Oneoftheconflictsthatateacherfacesrelatestoeconomics.Theteacherisexpectedtobeamodelofdressandappearance,t
TheUnitedNationsConferenceonDragAbusethattookplaceearlierthisyearinViennawasaveryproductivemeeting.Asnerve
最新回复
(
0
)