首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
当x>0,y>0,z>0时,求u(x,y,z)=lnx+lny+31nz在球面x2+y2+z2=5R2上的最大值,并证明(其中a>0,b>0,c>0).
当x>0,y>0,z>0时,求u(x,y,z)=lnx+lny+31nz在球面x2+y2+z2=5R2上的最大值,并证明(其中a>0,b>0,c>0).
admin
2019-05-14
82
问题
当x>0,y>0,z>0时,求u(x,y,z)=lnx+lny+31nz在球面x
2
+y
2
+z
2
=5R
2
上的最大值,并证明
(其中a>0,b>0,c>0).
选项
答案
先利用拉格朗日乘数法求得u(x,y,z)在球面x
2
+y
2
+z
2
=5R
2
上的最大值为[*].即我们已证明了在x
2
+y
2
+z
2
=5R
2
条件下,ln(xyz
3
)≤[*].即 [*] 令[*], 整理便可得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/zS04777K
0
考研数学一
相关试题推荐
设有幂级数2+.证明此幂级数满足微分方程y’’一y=一1;
设f(x)在[a,b]上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξf(x)dx=∫ξbf(x)dx.
计算曲面积分x3dydz+y3dzdx+(z3+1)dxdy,其中∑为x2+y2+z2=a2(z≥0)部分的上侧.
设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=0,且|f’(x)|≤2.证明:|∫02f(x)dx|≤2.
设f(x),g(x)在[a,b]上连续,证明:存在ξ∈(a,b),使得f(ξ)∫ξbg(x)dx=g(ξ)∫aξf(x)dx.
设f(x)在区间[a,b]上阶连续可导,证明:存在ξ∈(a,b),使得∫abf(x)dx=(b-a)f’’(ξ).
随机试题
女性,23岁,发现右乳腺肿物近2年,逐渐长大,界限清楚,活动,大小约为2.5cm×2cm,质中等,行手术切除。术中见肿物界限清楚,有包膜,切面呈灰白色,实性,部分呈纤维编织样。此肿物可能为
肝硬化假小叶形成的最主要因素是
下列可引起天然免疫原性疾病的病原体是
苇茎汤的功用是
成年男性血红蛋白低于多少时,提示有贫血
形成潜影的先决条件是
化妆品的字体设计不适合选择()字体。
下列关于疾病好发部位的描述中,错误的是()。
人生之中会遇到很多挑战。请谈谈你经历过的最难的一件事,以及你是怎么做的?
ATM网络的协议数据单元称为(21)。ATM适配层分为(22)两个子层。(23)是对应于A类业务的ATM适配层,它提供的业务特点是(24)。如果要传送IP数据报,则需要(25)业务的支持。
最新回复
(
0
)