首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2012年)(Ⅰ)证明方程χn+χn-1…+χ=1(n为大于1的整数)在区间(,1)内有且仅有一个实根; (Ⅱ)记(Ⅰ)中的实根为χn,证明χn存在,并求此极限.
(2012年)(Ⅰ)证明方程χn+χn-1…+χ=1(n为大于1的整数)在区间(,1)内有且仅有一个实根; (Ⅱ)记(Ⅰ)中的实根为χn,证明χn存在,并求此极限.
admin
2021-01-19
95
问题
(2012年)(Ⅰ)证明方程χ
n
+χ
n-1
…+χ=1(n为大于1的整数)在区间(
,1)内有且仅有一个实根;
(Ⅱ)记(Ⅰ)中的实根为χ
n
,证明
χ
n
存在,并求此极限.
选项
答案
(Ⅰ)令f(χ)=χ
n
+χ
n-1
+…+χ-1(n>1),则f(χ)在[[*],1]上连续,且 [*],f(1)=n-1>0, 由闭区间上连续函数的介值定理知,方程f(χ)=0在([*],1)内至少有一个实根. 当χ∈([*],1)时, f′(χ)=nχ
n-1
+(n-1)χ
n-2
+…+2χ+1>1>0, 故f(χ)在([*],1)内单调增加. 综上所述,方程f(χ)=0在([*],1)内有且仅有一个实根. (Ⅱ)由χ
n
∈([*],1)知数列{χ
n
}有界,又 χ
n
n
+χ
n
n-1
+…+χ
n
=1 χ
n
n
+χ
n
n-1
+χ
n+1
n-1
+…+χ
n+1
=1 因为χ>0,所以 χ
n
n
+χ
n
n-1
+…+χ
n
>χ
n+1
n
+χ
n+1
n-1
+…+χ
n+1
于是有 χ
n
>χ
n+1
,n=1,2…, 即{χ
n
}单调减少. 综上所述,数列{χ
n
}单调有界,故{χ
n
}收敛. 记a=[*]χ
n
.由于 [*] 令χ→∞并注意到[*]<χ
n
<χ
1
<1,则有 [*] 解得a=[*],即[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/zk84777K
0
考研数学二
相关试题推荐
求由曲线y=4-x2与X轴围成的部分绕直线x=3旋转一周所成的几何体的体积.
已知A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式。证明:aij=一Aij<=>ATA=E,且|A|=一1。
(Ⅰ)记Ω(R)={(x,y)|x2+y2≤R2},(Ⅱ)证明:
设x=x(t)由sint—∫tx(t)φ(u)du=0确定,φ(0)=φ’(0)=1且φ(u)>0为可导函数,求x”(0).
设为A*的特征向量,求A*的特征值λ及a,b,c和A对应的特征值μ.
在下列微分方程中,以y=(c1+χ)e-χ+c2e2χ(c1,c2是任意常数)为通解的是()
(2003年试题,十二)已知平面上三条不同直线的方程分别为l1:ax+2b+3c=0l2:bx+2cy+3a=0l3:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
(2001年试题,七)设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex一f(x),且f(0)=0,g(0)=2,求
(2003年试题,九)有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图1—6—1),容器的底面圆的半径为2m,根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以,mn2/min的速率均匀扩大(假设注入
设,B为三阶非零矩阵,且满足,BA=0,则当λ满足________时,B的秩恰为1.
随机试题
以劳动者人数为标志划分的企业规模叫企业的生产规模。()
Therearemanycommonlyheldbeliefsabouteyeglassesandeyesightthatarenotprovenfacts.Forinstance,somepeoplebelieve
粪便中出现巨噬细胞常见于
咬下唇习惯形成的错,可能性最小的是
通常认为,沉井法适于的条件包括有()。
学生管理的基本原则有哪些?
阅读以下文字回答下面问题。继19世纪的报刊和20世纪的广播、电视之后,1993年因特网开始向公众开放,1998年5月联合国新闻委员会正式提出“第四媒体”的概念。在我国,除传统媒体如《人民日报》等纷纷上网办电子版外,许多网站的新闻味越来越足,第四媒体
哥特式弓描记是为了()。
设f(x)在[-2,2]上具有连续的导数,且f(0)=0,F(x)=∫-xx(x+t)dt.证明:级数绝对收敛.
A、Theywillbeloyaltous.B、Theywillbethankfultous.C、Theywilldrawinmorechances.D、Theywillbefriendswithus.A
最新回复
(
0
)