首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (Ⅰ)存在η∈(1/2,1),使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (Ⅰ)存在η∈(1/2,1),使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
admin
2019-07-10
77
问题
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:
(Ⅰ)存在η∈(1/2,1),使f(η)=η;
(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f
’
(ξ)-λ[f(ξ)-ξ]=1.
选项
答案
(Ⅰ)由题设,引入辅助函数φ(x)=x-f(x),则φ(x)在[0,1]上连续,由已知条件f(1)=0及f(1/2)=1,知φ(1)=1-f(1)=1>0且[*] ,所以由闭区间上连续函数的介值定理知存在一点η∈(1/2,1),使得φ(n)=0, 即η-f(η)=0,因此存在η∈(1/2,1),使f(η)=η,证毕. (Ⅱ)引入辅助函数,由原函数法将所需证明的等式中的ξ改写为x, 有f
’
(x)-λ[f(x)-x]=1,即f
’
(x)-λf(x)=1-λx. 由一阶线性非齐次微分方程的通解公式得: 所以[f(x)-x]e
-λx
=C,至此可令辅助函数为g(x)=[f(x)-x]e
-λx
=-φ(x)e
-λx
, 由已知条件及(I)中结论,知g(x)也是连续函数, 且g(0)=[f(0)-0]e
0
=0,g(η)=-φ(η)e
-λη
=0. 由罗尔定理知存在一点ξ(0,η),使得g
’
(ξ)=0, 又g
’
(x)=-λe
-λx
[f(x)-x]+e
-λx
[f
’
(x)-1], 所以-λ[f(ξ)-ξ]+f
’
(ξ)-1=0 此即f
’
(ξ)-λ[f(ξ)-ξ]=1.证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/zoN4777K
0
考研数学二
相关试题推荐
设函数f(x)=lnx+(Ⅰ)求f(x)的最小值;(Ⅱ)设数列{xn}满足lnxn+<1,证明xn存在,并求此极限。
当x→+∞时,ln(1+[*])与1/x是等价无穷小量,于是[*]
(Ⅰ)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b-a);(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点ξ∈(1,3
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,f(x)/x<0。证明:(Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;(Ⅱ)方程f(x)f"(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根。
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小。
设函数y=y(x)由方程2xy=x+y所确定,则dy|x=0=_______。
求极限:
求极限:.
求极限
设C,C1,C2,C3是任意常数,则以下函数可以看作某个二阶微分方程的通解的是
随机试题
A.AUUB.GUAC.AUGD.UGA遗传密码中的终止密码子是
《中药饮片质量标准通则(试行)》的通知规定根茎、藤木类,叶类含药屑、杂质不得超过
息止颌间隙的大小为
1.8FFDGPET及.PET-CT肿瘤显像不能用于
A.上腹疼痛B.糖尿病C.胰源性腹水D.ERCP胰管成串珠样改变E.B超示胰腺增大提示慢性胰腺炎最有价值的是
痰湿阻肺的特征是()燥邪犯肺的特征是()
工程量清单格式的组成内容包括()。
企业因政策性原因发生的巨额经营亏损,在符合条件的情况下,应确认与其相关的递延所得税负债。()
学习者在第二语言习得过程中构建的,既不同于母语又不同于目的语的语言系统叫____________。(暨南大学2017)
Inalmosteverybiguniversity(大学intheU.S.A,footballisafavouritesport.Americanfootballisnotlikesoccer.Playerss
最新回复
(
0
)