首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Why Pagodas Don’t Fall Down A)In a land swept by typhoons and shaken by earthquakes, how have Japan’s tallest and seemingly flim
Why Pagodas Don’t Fall Down A)In a land swept by typhoons and shaken by earthquakes, how have Japan’s tallest and seemingly flim
admin
2015-01-31
72
问题
Why Pagodas Don’t Fall Down
A)In a land swept by typhoons and shaken by earthquakes, how have Japan’s tallest and seemingly flimsiest old buildings—500 or so wooden pagodas—remained standing for centuries? Records show that only two have collapsed during the past 1400 years. Those that have disappeared were destroyed by fire as a result of lightning or civil war.
B)The disastrous Hanshin earthquake in 1995 killed 6,400 people, toppled elevated highways, flattened office blocks and devastated the port area of Kobe. Yet it left the magnificent five-storey pagoda at the Toji temple in nearby Kyoto unscathed, though it levelled a number of buildings in the neighbourhood.
C)Japanese scholars have been mystified for ages about why these tall, slender buildings are so stable. It was only thirty years ago that the building industry felt confident enough to erect office blocks of steel and reinforced concrete that had more than a dozen floors. With its special shock absorbers to dampen the effect of sudden sideways movements from an earthquake, the thirty-six-storey Kasumigaseki building in central Tokyo—Japan’s first skyscraper—was considered a masterpiece of modern engineering when it was built in 1968.
D)Yet in 826, with only pegs and wedges to keep his wooden structure upright, the master builder Kobodaishi had no hesitation in sending his majestic Toji pagoda soaring fifty-five metres into the sky—nearly half as high as the Kasumigaseki skyscraper built some eleven centuries later. Clearly, Japanese carpenters of the day knew a few tricks about allowing a building to sway and settle itself rather than fight nature’ s forces. But what sort of tricks?
E)The multi-storey pagoda came to Japan from China in the sixth century. As in China, they were first introduced with Buddhism and were attached to important temples. The Chinese built their pagodas in brick or stone, with inner staircases, and used them in later centuries mainly as watchtowers.
F)When the pagoda reached Japan, however, its architecture was freely adapted to local conditions—they were built less high, typically five rather than nine storeys, made mainly of wood and the staircase was dispensed with because the Japanese pagoda did not have any practical use but became more of an art object. Because of the typhoons that batter Japan in the summer, Japanese builders learned to extend the eaves of buildings further beyond the walls. This prevents rainwater gushing down the walls. Pagodas in China and Korea have nothing like the overhang that is found on pagodas in Japan.
G)The roof of a Japanese temple building can be made to overhang the sides of the structure by fifty percent or more of the building’ s overall width. For the same reason, the builders of Japanese pagodas seem to have further increased their weight by choosing to cover these extended eaves not with the porcelain tiles of many Chinese pagodas but with much heavier earthenware tiles.
H)But this does not totally explain the great resilience of Japanese pagodas. Is the answer that, like a tall pine tree, the Japanese pagoda—with its massive trunk—like central pillar known as shinbashira—simply flexes and sways during a typhoon or earthquake? For centuries, many thought so. But the answer is not so simple because the startling thing is that the shinbashira actually carries no load at all.
I)In fact, in some pagoda designs, it does not even rest on the ground, but is suspended from the top of the pagoda—hanging loosely down through the middle of the building. The weight of the building is supported entirely by twelve outer and four inner columns.
J)And what is the role of the shinbashira, the central pillar? The best way to understand the shinbashira’ s role is to watch a video made by Shuzo Ishida, a structural engineer at Kyoto Institute of Technology. Mr Ishida, known to his students as "Professor Pagoda" because of his passion to understand the pagoda, has built a series of models and tested them on a "shake-table" in his laboratory. In short, the shinbashira was acting like an enormous stationary pendulum. The ancient craftsmen, apparently without the assistance of very advanced mathematics, seemed to grasp the principles that were, more than a thousand years later, applied in the construction of Japan’ s first skyscraper.
K)What those early craftsmen had found by trial and error was that under pressure a pagoda’ s loose stack of floors could be made to slither to and fro independent of one another. Viewed from the side, the pagoda seemed to be doing a snake dance—with each consecutive floor moving in the opposite direction to its neighbours above and below. The shinbashira, running up through a hole in the centre of the building, constrained individual storeys from moving too far because, after moving a certain distance, they banged into it, transmitting energy away along the column.
L)Another strange feature of the Japanese pagoda is that, because the building tapers, with each successive floor plan being smaller than the one below, none of the vertical pillars that carry the weight of the building is connected to its corresponding pillar above. In other words, a five-storey pagoda contains not even one pillar that travels right up through the building to carry the structural loads from the top to the bottom.
M)More surprising is the fact mat the individual storeys of a Japanese pagoda, unlike their counterparts elsewhere, are not actually connected to each other. They are simply stacked one on top of another like a pile of hats. Interestingly, such a design would not be permitted under current Japanese building regulations.
N)And the extra-wide eaves? Think of them as a tightrope walker’s balancing pole. The bigger the mass at each end of the pole, the easier it is for the tightrope walker to maintain his or her balance. The same holds true for a pagoda. "With the eaves extending out on all sides like balancing poles", says Mr Ishida, "the building responds to even the most powerful jolt of an earthquake with a graceful swaying, never an abrupt shaking". Here again, Japanese master builders of a thousand years ago anticipated concepts of modern structural engineering.
The Japanese builders of a thousand years ago anticipated the concept that had been applied in the construction of Japan’ s first skyscraper.
选项
答案
J
解析
根据关键词“first skyscraper”定位于J段最后一句,“The ancient craftsmen,apparently without the assistance of very advanced mathematics,seemed to grasp theprinciples that were,more than a thousand years later,applied in the construction ofJapan’s first skyscraper.”题干“Japanese builders of a thousand years ago”对应“ancient craftsmen”,“anticipated the concept”对应“grasp the principles”,所以,正确答案是J。
转载请注明原文地址:https://kaotiyun.com/show/0Jh7777K
0
大学英语六级
相关试题推荐
A、Thoselivingoutdoors.B、Thoseinfullbloom.C、Thosegrowingslowly.D、Thosehavingbeenwatered.B细节题。文中提到,突然遭遇寒冷对植物是最大的威胁,尤
A、Themanshouldgofortheexchangeprogram.B、ThemanshouldnotgototheU.S.for3months.C、Manypeoplewanttogoforthe
ImprovingthebalancebetweentheworkingpartofthedayandtherestofitisagoalofagrowingnumberofworkersinrichWe
ImprovingthebalancebetweentheworkingpartofthedayandtherestofitisagoalofagrowingnumberofworkersinrichWe
A、Horseriders.B、Teenagegirls.C、Canadianparents.D、Internationaltravelers.C选项表明,本题考查人物身份。短文通篇在介绍ShadowRidgeSummerCamps,
A、Hewantstostudyinagraduateschool.B、Therearemorespecializedmaterials.C、Hehassomeacquaintancesthere.D、Thereis
A、Itwillhavemoreearthquakes.B、Itisbecominglargerslowly.C、Itisdividedbyalargeplate.D、Itwillbecomeevendeeper.
WhyPagodasDon’tFallDownA)Inalandsweptbytyphoonsandshakenbyearthquakes,howhaveJapan’stallestandseeminglyflim
WhyPagodasDon’tFallDownA)Inalandsweptbytyphoonsandshakenbyearthquakes,howhaveJapan’stallestandseeminglyflim
随机试题
男性,60岁,4小时前突发心前区疼痛,心电图示急性前壁心肌梗死,既往无高血压史、出血性疾病和癫痫史。入院时心率80次/分,律齐,血压150/90mmHg,入院后2小时突然出现短暂意识丧失,抽搐,听不到心音。如果患者并发乳头肌断裂,则下列哪种体征最可能出
A.大补元气B.接续筋骨C.补益肺肾D.补脾益肾E.补脾养心
关于第二心音的叙述说法错误的是
D公司是一家上市公司,其股票于2020年7月1日的收盘价为每股40元。有一种以该股票为标的资产的看涨期权,执行价格为42元,到期时间是3个月。3个月以内公司不会派发股利,3个月以后股价有两种变动的可能:上升到46元或者下降到30元。国库券利率为4%(年名义
下列选项中,属于村民委员会的任务有()
南京国民政府的民法典规定:民事法律未规定者,依习惯,无习惯者,()。
设在工程中有一个标准模块,其中定义了如下记录类型:TyPeRecordIDA3IntegerNameAsString*20EndTyPe在窗体中添加一个名为Command1的命令按
若x,i,j和k都是int型变量,则计算表达式x=(i=4,j=16,k=32)后,x的值为()。
不是Access预定义的报表格式的是()。
Thirty-onemillionAmericansareover60yearsofage,andtwenty-ninemillionofthemarehealthy,busy,productivecitizens.By
最新回复
(
0
)