首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
《全日制普通高级中学教科书(必修).数学》第八章第一节《椭圆及其标准方程》是用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,在此基础上完成下列问题: (1)在学习本内容前,学生已具备了哪些相关知识和数学活动经验?
《全日制普通高级中学教科书(必修).数学》第八章第一节《椭圆及其标准方程》是用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,在此基础上完成下列问题: (1)在学习本内容前,学生已具备了哪些相关知识和数学活动经验?
admin
2017-05-24
75
问题
《全日制普通高级中学教科书(必修).数学》第八章第一节《椭圆及其标准方程》是用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,在此基础上完成下列问题:
(1)在学习本内容前,学生已具备了哪些相关知识和数学活动经验?
(2)写出本内容的教学重点和教学难点。
(3)设计本内容的教学过程。
选项
答案
(1)解析几何是数学的一个重要分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系。在之前的学习中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形,在第八章,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。之前学生已经具备了观察、操作、讨论等教学活动经验;分类活动经验;抽象、归纳的经验。 (2)教学重难点 重点:椭圆的定义及标准方程,坐标法的基本思想; 难点:椭圆标准方程的推导与化简。 (3)教学过程 (一)创设情境,认识椭圆。 材料:对椭圆的感性认识,通过演示课前准备的生活中有关椭.圆的实物和图片,学生从感性上认识椭圆。 引入课题:椭圆及其标准方程。 (二)动手实验,亲身体会。 教师演示。引出研究思路。 思考:在上一章圆的学习中我们知道:平面内到一定点的距离为定长的点的轨迹是圆。那么,到两定点距离之和等于常数的点的轨迹又是什么呢?(学生分组试验) 试验一:用事先准备好的绳子,把它的两端都固定在同一点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖(动点)画出的轨迹是一个什么图形? 提问1:在整个过程中什么不变? 提问2:笔尖(动点)满足什么几何条件? 试验二:如果把细绳的两端拉开一段距离,分别固定在图板的两点F
1
、F
2
处,套上铅笔,拉紧绳子,移动笔尖(肘),画出的又是什么图形?(教师巡视指导,展示学生成果) 分析实验,得出规律。 提问1:在画出一个椭圆的过程中,细绳的两端的位置是固定的还是运动的? 提问2:在画椭圆的过程中,绳子的长度变了没有?说明了什么? 提问3:在画椭圆的过程中,绳子长度与两定点距离大小有怎样的关系? 提问4:改变绳子长度与两定点距离的大小,轨迹又是什么? 学生总结规律:|MF
1
|+|MF
2
|>|F
1
F
2
|轨迹为椭圆; |MF
1
|+|MF
2
|=|F
1
F
2
|轨迹为线段; |MF
1
|+|MF
2
|<|F
1
F
2
|轨迹不存在。 (三)总结归纳,形成概念。 定义:平面内,到两个定点F
1
、F
2
的距离之和等于常数(大于|F
1
F
2
|)的点的轨迹叫做椭圆。 提问:椭圆定义还可以用集合语言如何表示? 例题:边学边用。深化理解定义 用定义判断下列动点M的轨迹是否为椭圆? (1)到F
1
(-2,0)、F
2
(2,0)的距离之和为6的点的轨迹; (2)到F
1
(0,-2)、F
2
(0,2)的距离之和为4的点的轨迹; (3)到F
1
(-2,0)、F
2
(2,0)的距离之和为3的点的轨迹。 1.复习求曲线的方程的基本步骤: (1)建系;(2)设点;(3)列式;(4)化简;(由学生回答,不正确的教师给予纠正。) 2.如何选取坐标系? 教师分析椭圆,学生观察椭圆的几何特征(对称性),如何建系能使方程更简洁? 学生讨论,经过比较确定方案:把F
1
、F
2
建在χ轴上,以F
1
F
2
的中点为原点,或者把F
1
、F
2
建在y轴上,以F
1
F
2
的中点为原点。 3.推导标准方程。 选取建系方法,让学生动手,尝试推导。 (请两位同学上台同时演示两种建系方法并推导方程) 例如:以过F
1
、F
2
的直线为χ轴,线段F
1
F
2
的垂直平分线为y轴,建立平面直角坐标系。设|F
1
F
2
|=2c(c>0),点M(χ,y)为椭圆上任意一点, 则P={M|MF
1
|+|MF
2
|=2a}(称此式为几何条件), ∴得[*]=2a(实现集合条件代数化), (想一想:下面怎样化简?) [*] (1)教师为突破难点。进行引导设问: 我们怎么化简带根式的式子?对于本式是直接平方好还是整理后再平方好呢? 化简,得(a
2
-c
2
)χ
2
+a
2
y
2
=a
2
(a
2
-c
2
)。 (2)b的引入。 由椭圆的定义可知,2a>2c,∴a
2
-c
2
>0。 让点M运动到y轴正半轴上(如图),由学生观察图形直观获得a,c的几何意义,进而自然引进b,此时设b
2
=a
2
-c
2
,于是得b
2
χ
2
+a
2
y
2
=a
2
b
2
,两边同时除以a
2
b
2
,得到方程:[*]=1(a>b>0)(称为椭圆的标准方程)。 同理:建立焦点在y轴上的椭圆的标准方程。 4.相互比较,深化理解两种标准方程 学生讨论:如何根据标准方程判断焦点在哪个坐标轴上? [*] 得出结论:椭圆焦点的位置由标准方程中分母的大小确定(焦点在分母大的坐标轴上) 5.归纳概括.掌握特征。 (1)椭圆标准方程形式: 它们都是二元二次方程,左边是两个分式的平方和,右边是1; (2)椭圆标准方程中三个参数a,b,c的关系:b
2
=a
2
-c
2
(a>b>0); (3)椭圆焦点的位置由标准方程中分母的大小确定。 (四)尝试应用。范例教学。 例1.下列哪些是椭圆的方程,如果是。判断它的焦点在哪个坐标轴上?并指明a、b,写出焦点坐标。 [*] 例2.写出适合下列条件的椭圆的标准方程:两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点到两焦点距离的和等于10. 变式一:将上题焦点改为(0.-4)、(0,4),结果如何? 变式二:将上题改为两个焦点的距离为8,椭圆上一点P到两焦点的距离和等于10,结果如何? 例3.写出适合下列条件的椭圆的标准方程:两个焦点的坐标分别是(0,-2)、(0,2),并且经过点[*]。 (五)小结归纳、布置作业
解析
转载请注明原文地址:https://kaotiyun.com/show/0Wtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
诗人艾青在诗中写道:“即使我们是一枝蜡烛,也应该‘蜡炬成灰泪始干’;即使我们只是一根火柴,也要在关键时刻有一次闪耀;即使我们死后尸骨都腐烂了,也要变成磷火在荒野中燃烧。”诗人的话语对我们的启示是()。
漫画《腾不出手》给我们的哲学启示是()。①要树立创新意识②要用联系的观点看问题③在复杂的事物中要善于抓主要矛盾④要坚持从实际出发,主观符合客观
材料:近年来,我国政府为了增加居民收入,扩大居民消费,保障人民生活,采取了一系列措施。如加强“三农”工作,增加农民收入;稳步推进医药卫生事业改革;实施更加积极的就业政策;加快完善社会保障体系;大力发展教育事业;维护社会稳定,促进社会和谐。分析材料所体现的政
习近平总书记曾在北京文艺工作座谈会上指出,文艺创作不能在市场经济中迷失方向,文艺创作不要沾上铜臭味。一些文艺创作沽上铜臭味表明()。
唯物辩证法要求我们坚持两点论和重点论相统一的方法。下列说法体现这一方法的是()。
每年6月是全国安全生产月。安全生产是生产发展的底线。缺乏安全意识是最大的安全隐患,麻痹大意往往导致生产事故频发。从哲学上看,安全意识之所以成为安全生产的关键,是因为()。①人的意识决定了实践发展的方向和进程②人的意识影响实践发展的趋势和结果③
某思想政治课教师在进行文化知识的讲解时,向学生展示了文化图片,使学生感受文化的氛围和力量。此处教师运用的教学方法是()。
中国籍散货轮“德新海”轮在印度洋被海盗武装劫持,这一事件再次将全球目光吸引到这片号称世界上最危险的海域上。要彻底铲除索马里附近海域海盗,仅靠武力是不够的,处理好国家、地区间经济发展的不平衡问题更具有深层次意义,这体现了()。
新课程标准对于运算能力的基本界定是()。
为研究7至lO岁少年儿童的身高情况,甲、乙两名研究人员分别随机抽取了100名和1000名两组调查样本,若甲、乙抽取的两组样本平均身高分别记为α、β(单位:cm),则α、β的大小关系为()
随机试题
在聚氨酯泡沫保温层补口工序中,应检查()。
日侍昆山相国于朝房,察其举止,聆其语言,久而得之,此吾之所为师也。
有关康复医学概念的描述,错误的是
压力蒸汽灭菌器要求,不正确的是
隧道水害的防治措施包括()。
国家统计局2012年2月22日公告,经初步核算,2011年我国的国内生产总值按可比价格计算比上年增长9.2%。这个指标反映的是()。[2012年初级真题]
甲私立医院收到A医药公司捐赠的药品一批,发票注明的价款为30万元,捐赠协议规定该批药品用于临床医学。甲私立医院收到A医药公司捐赠的药品已经验收入库。则甲私立医院正确的会计处理是()。
如果一个社会只允许有“成功/失败”的二元对立语境存在,这个社会是有问题的。事实上,本来就不应该用这种武断的二元对立模式来进行价值判断,有人愿意成功向上、出人头地,这无可厚非,但也要允许一些人发发呆、做做梦,过点没有多少追求的小日子。每个人的性格、成长经历都
下面技术无法使10Mbit/s的以太网升级到100Mbit/s的是()。
How"SecondBrain"InfluencesMoodandWell-Being[A]AsOlympiansgoforthegoldinVancouver,eventhesteeliestarelikelyto
最新回复
(
0
)