首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Let n and k be positive integers with k< n. From an n x n array of dots, a k x k array of dots is selected. The figure above sho
Let n and k be positive integers with k< n. From an n x n array of dots, a k x k array of dots is selected. The figure above sho
admin
2022-10-18
53
问题
Let n and k be positive integers with k< n. From an n x n array of dots, a k x k array of dots is selected. The figure above shows two examples where the selected k x k array is enclosed in a square. How many pairs (n, k) are possible so that exactly 48 of the dots in the n x n array are NOT in the selected k x k array?
选项
A、1
B、2
C、3
D、4
E、5
答案
C
解析
The n × n array has n
2
dots and the k × k array has k
2
dots. The number of dots in the n × n array that are not in the k x k array is given by n
2
-k
2
= (n-k)(n + k).
Therefore, (n - k)(n + k) - 48 is a necessary condition for there to be 48 dots not in the k × k array. This is also a sufficient condition, since it is clear that at least one k x k array of dots can be selected for removal from an× n array of dots when k ≤ n.
The equation (n - k)(n + k) = 48 represents two positive integers, namely n - k and n + k,whose product is 48. Thus, the smaller integer n - k must be 1,2,3,4, or 6, and the larger integer n + k must be 48,24,16,12, or 8. Rather than solving five pairs of simultaneous equations (for example, n - k = 2 and n + k = 24 is one such pair), it is more efficient to observe that the solution to the
system n - k = a and n + k = b is n = = (a + b)/2 (add the equations, then divide by 2) and k = - (b - a)/2(substitute n = (a + b)/2 for n in either equation and solve for k; or subtract the equations, then divide by 2). Therefore, the possible pairs (n, k) arise exactly when 48 = ab and both a + b and b - a are divisible by 2. This occurs exactly three times—48 = (2)(24), 48 = (4)(12), and 48 = (6)(8).
The correct answer is C.
转载请注明原文地址:https://kaotiyun.com/show/1ttO777K
本试题收录于:
GMAT QUANTITATIVE题库GMAT分类
0
GMAT QUANTITATIVE
GMAT
相关试题推荐
Maryregretted()toJohn’sbirthdaypartylastSunday.
Weallknowthatitispossibleforordinarypeopletomaketheirhomesontheequator(赤道),althoughoftentheymayfeeluncomfo
SHANGHAI:【T1】Eligible(符合条件的)couplesinthecityareforthefirsttimebeingencouragedtohaveasecondchild,asauthoritiesm
WhatdowemeanbyaperfectEnglishpronunciation?Inone【C1】______therearemanydifferentkindsofEnglishastherearespeak
JardenZinc(锌)Products,alargezincplantafewmilesoutsideGreeneville,Tennessee,hasaspecialclaim.Since1982,ithas
______inarecentsciencecompetition,thethreestudentswereawardedscholarshipstotaling$21,000.
SpeakerA:Whatasurprise!Youchangedyourhairstyle.SpeakerB:Yes,andanothersurprise,I’mgoingtogetmarriednextSat
Long-distancerunnersmayattimesworryabouttheirhearthealthwhiletakingpartintheevents.Butastudyfindsthatheats
Frankfurt,Germany,isoneofthemost______populatedregionsinWesternEurope.
Itistothenovelist’screditthatalloftheepisodesinhernovelarepresentedrealistically,withoutany____orplayfulsu
随机试题
婴儿出现(),如出血位置无法压迫,可让婴儿躺下,用拳头或手掌根部把出血的血管压向对侧的骨头方向。
常见的肛周脓肿是
治疗阴虚内热型内伤发热的首选方剂是
可能的诊断是若需要应采取的正确预防措施是
喜欢买报纸的人、常常________于报刊亭的人必然有着阅读的兴趣并养成了习惯,这样的行为不仅影响着个人的生活,也在________中影响着他人。将报刊亭打造成一个公共的阅读空间,就像现在随处可见的自助K歌房一样,这种________又便捷的阅读点,激发的
典型欠阻尼二阶系统超调量大于5%,则其阻尼ξ的范围为()。
从各国保险立法来看,关于投保人或被保险人的告知方式一般分为以下两种,即()。
某企业2011年年底“应付账款”科目月末贷方余额20000元,其中:“应付甲公司账款”明细科目贷方余额15000元,“应付乙公司账款”明细科目贷方余额5000元;“预付账款”科目月末贷方余额10000元,其中:“预付账款——甲工厂”明细科目贷方余额
Manystudentsfindtheexperienceofattendinguniversitylecturestobeareallyconfusingand【C1】______experience.Thelecture
Ithasbeenproventhatshortburstsofconcentrationrepeatedfrequentlyaremuchmore【B1】______thanonelongperiod.So,even
最新回复
(
0
)