首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
A bank account earned 2% annual interest, compounded daily, for as long as the balance was under $1,000, starting when the accou
A bank account earned 2% annual interest, compounded daily, for as long as the balance was under $1,000, starting when the accou
admin
2022-10-18
106
问题
A bank account earned 2% annual interest, compounded daily, for as long as the balance was under $1,000, starting when the account was opened. Once the balance reached $1,000, the account earned 2. 5% annual interest, compounded daily until the account was closed. No deposits or withdrawals were made. Was the total amount of interest earned at the 2% rate greater than the total amount earned at the 2. 5% rate?
(1) The account earned exactly $25 in interest at the 2. 5% rate.
(2) The account was open for exactly three years.
选项
A、Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B、Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C、BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D、EACH statement ALONE is sufficient.
E、Statements (1) and (2) TOGETHER are NOT sufficient.
答案
C
解析
Let P
0
, P
1
and P
2
be the initial balance, the balance after one year, and the balance after two years.
(1) Since $25 is the exact amount of interest earned in one year by an initial amount of $1,000 earning 2.5 percent annual interest, compounded yearly, it follows that $25 is the total amount of interest earned in slightly less than one year by an initial amount of $1,000 earning 2.5 percent annual interest, compounded daily. However, the total amount of interest earned at the 2 percent rate could be less than $25 (for example, if P
0
= $990, then the interest earned at the 2 percent rate is $10) and the total amount of interest earned at the 2 percent rate could be greater than $25 (for example, if P
0
= $900, then the interest earned at the 2 percent rate is $100); NOT sufficient.
(2) Given that the account was open for exactly three years, then the total amount of interest at the 2 percent rate could be less than the total amount of interest at the 2.5 percent rate (for example, if the balance reached $1,000 a few days after the account was open). On the other hand, the total amount of interest at the 2 percent rate could also be greater than the total amount of interest at the 2.5 percent rate (for example, if the balance reached $1,000 a few days before the account was closed); NOT sufficient.
Given (1) and (2), it follows that the account earned interest at the 2.5 percent rate for slightly less than one year and the account earned interest at the 2 percent rate for slightly more than two years. Therefore, the balances of P
1
and P
2
were reached while the account was earning interest at the 2 percent rate. Since P
0
(1.02) < P
1
and P
1
(1.02) < P
2
(compounding daily for one year produces a greater amount than compounding annually for one year), the values of P
0
, P
1
, and P
2
satisfy the following inequalities.
P
0
< P
0
(1.02) < P
1
< P
1
(1.02) < P
2
< 1,000
Note that the difference 1,000 - P
0
is the total amount of interest earned at the 2 percent rate. Thus, using (2), we wish to determine whether this difference is greater than 25. From P
0
(1.02) < P
1
it follows that P
0
(1.02)
2
< P
1
(1.02), and since P
1
(1.02) < 1,000, we have P
0
(1.02)
2
< 1,000. Therefore, P
0
< 1000/(1.02)
2
, from which we can conclude the following inequality.
1,000-P
0
> 1,000-1000/(1.02)
2
Since 1,000-1000/(1.02)
2
> 25 (see below), it follows that 1,000 - P
0
> 25 and hence the total amount of interest earned at the 2 percent rate is greater than the total amount of interest earned at the 2.5 percent rate.
One way to verify that 1,000 - 1000/(1.02)
2
> 25 is to verify that 1-1/(1.02)
2
>1/40, or equivalently, verify that 1/(1.02)
2
< 39/40, or 40 < 39(1.02)
2
.
Now note that we can obtain this last inequality from 40 < 39(1.04) (because 39 + 39(0.04) is greater than 39 + 1) and 1.04 < (1.02)
2
.
The correct answer is C;
both statements together are sufficient.
转载请注明原文地址:https://kaotiyun.com/show/2ktO777K
本试题收录于:
GMAT QUANTITATIVE题库GMAT分类
0
GMAT QUANTITATIVE
GMAT
相关试题推荐
Whatdowemeanbyasatisfactorystandardofliving?Obviously,itmustincludethebasicnecessitiesoflifesuchasfood,clo
Whatdowemeanbyasatisfactorystandardofliving?Obviously,itmustincludethebasicnecessitiesoflifesuchasfood,clo
TheusedcarIboughtcostfour______pounds.
Inasecondhandbookshop,Billycameacrossabookwhichhethoughtwascertainlya______edition.
Wemustleavethepartyatexactly9:00________we’llbelateforwork.
________thattheymayeventuallyreducetheamountoflaborneededonconstructionsitesby90percent.
Aspecialresearchteamfromthelocalmedicalcenter【C1】______experimentsoncompletelyblindbabies.Thebabiestobetestedo
Allthefollowingcasesareon-the-jobsmokingexceptthat______.Passivesmokingmeans______.
"Millionsdoit".Inthissentence"doit"refersto_____.Thepolarregionis______.
Inarightisoscelestriangle,thelengthsofthetwononhypotenusesidesaredesignateda.Whatistheareaofthetrianglein
随机试题
贯彻“三个代表”重要思想的关键在坚持______,核心在保持______,本质在坚持______。()
民国初年颁行的学制是()
不可抗力的范围大致有()
(2009年第33题)下列核苷酸经核糖核苷酸还原酶催化能转化生成脱氧核苷酸的是
患者,男,63岁。慢性肺气肿病史24年,发热,咳大量黏液脓痰2周,伴心悸,气喘。护理检查:呼吸急促,发绀明显,颈静脉怒张,下肢浮肿。该患者应避免使用的药物是
下列哪些情形属于国家赔偿的范围?()
下列选项中,不属于无机结合料稳定基层特点的是()。
下列关于北京城市建设的说法,不正确的是()。
“十一五”期间,福建省亿元市场总体规模持续扩大,市场成交额不断增加。到2010年底,全省成交额达亿元以上的商品交易市场有159个,比上年增加3个,比2005年增加52个;市场摊位数、营业面积分别为6.30万个、351.62万平方米,年成交额1333.95亿
狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?()
最新回复
(
0
)