定义栈的数据结构,要求添加一个min函数,能够得到栈的最小元素。要求函数min、push以及pop的时间复杂度都是O(1)。

admin2019-03-29  129

问题 定义栈的数据结构,要求添加一个min函数,能够得到栈的最小元素。要求函数min、push以及pop的时间复杂度都是O(1)。

选项

答案#include #include template class CStackWithMin { public: CStackWithMin(void) {} virtual ~CStackWithMin(void) {} T& top(void); const T& top(void) const; void push(const T& value); void pop(void); const T& min(void) const; private: T>m_data;// theelements of stack size_t>m_minIndex;// the indicesof minimum elements }; // get the last element of mutable stack template T& CStackWithMin::top() { return m_data.back(); } // get the last element of non-mutable stack template const T& CStackWithMin::top() const { return m_data.back(); } // insert an elment at the end of stack template void CStackWithMin::push(const T& value) { // append the data into the end of m_data m_data.push_back(value); // set the index of minimum elment in m_data at the end of m_minIndex if(m_minIndex.size() == 0) m_minIndex.push_back(0); else { if(value < m_data[m_minIndex.back()]) m_minIndex.push_back(m_data.size() - 1); else m_minIndex.push_back(m_minIndex.back()); } } // erease the element at the end of stack template void CStackWithMin::pop() { // pop m_data m_data.pop_back(); // pop m_minIndex m_minIndex.pop_back(); } // get the minimum element of stack template const T& CStackWithMin::min() const { assert(m_data.size() > 0); assert(m_minIndex.size() > 0); return m_data[m_minIndex.back()]; } 举个例子演示上述代码的运行过程: 步骤 数据栈 辅助栈 最小值 1.push 3 3 0 3 2.push 4 3,4 0,0 3 3.push 2 3,4,2 0,0,2 2 4.push 1 3,4,2,1 0,0,2,3 1 5.pop 3,4,2 0,0,2 2 6.pop 3,4 0,0 3 7.push 0 3,4,0 0,0,2 0

解析 这是去年google的一道面试题。
我看到这道题目时,第一反应就是每次push一个新元素时,将栈里所有逆序元素排序。这样栈顶元素将是最小元素。但由于不能保证最后push进栈的元素最先出栈,这种思路设计的数据结构已经不是一个栈了。
在栈里添加一个成员变量存放最小元素(或最小元素的位置)。每次push一个新元素进栈的时候,如果该元素比当前的最小元素还要小,则更新最小元素。
乍一看这样思路挺好的。但仔细一想,该思路存在一个重要的问题:如果当前最小元素被pop出去,如何才能得到下一个最小元素?
因此仅仅只添加一个成员变量存放最小元素(或最小元素的位置)是不够的。我们需要一个辅助栈。每次push一个新元素的时候,同时将最小元素(或最小元素的位置。考虑到栈元素的类型可能是复杂的数据结构,用最小元素的位置将能减少空间消耗)push到辅助栈中;每次pop一个元素出栈的时候,同时pop辅助栈。
转载请注明原文地址:https://kaotiyun.com/show/2xmZ777K
0

最新回复(0)