设f(x)在区间[0,1]上可导,f(1)=.证明:存在ξ∈(0,1),使得2f(ξ)+ξf’(ξ)=0.

admin2015-06-26  42

问题 设f(x)在区间[0,1]上可导,f(1)=.证明:存在ξ∈(0,1),使得2f(ξ)+ξf’(ξ)=0.

选项

答案令φ(x)=x2f(x),由积分中值定理得f(1)=[*]=c2f(c),其中c∈[0,[*]],即φ(c)=φ(1),显然φ(x)在区间[0,1]上可导,由罗尔中值定理,存在ξ∈(c,1)[*](0,1),使得φ’(ξ)=0.而φ’(x)=2xf(x)+x2f’(x),所以2ξf(f)+ξ2f’(ξ)=0,注意到ξ≠0,故2f(ξ)+Sf’(ξ)=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/3CU4777K
0

相关试题推荐
最新回复(0)