首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12一y22一y32,又A*α=α,其中α=(1,1,一1)T. (Ⅰ)求矩阵A; (Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12一y22一y32,又A*α=α,其中α=(1,1,一1)T. (Ⅰ)求矩阵A; (Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
admin
2014-12-17
46
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX经过正交变换化为标准形f=2y
1
2
一y
2
2
一y
3
2
,又A
*
α=α,其中α=(1,1,一1)
T
.
(Ⅰ)求矩阵A;
(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x
1
,x
2
,x
3
)=X
T
AX化为标准形.
选项
答案
(Ⅰ)显然A的特征值为λ
1
=2,λ
2
=一1,λ
3
=一1,|A|=2,伴随矩阵A
*
的特征值为μ
1
=1,μ
2
=一2,μ
3
=一2.由A
*
α=α得AA
*
α=Aα,即Aα=2α,即α=(1,1,一1)
T
是矩阵A的对应于特征值λ
1
=2的特征向量 令ξ=(x
1
,x
2
,x
3
)
T
为矩阵A的对应于特征值λ
2
=一1,λ
3
=一1的特征向量,因为A为实对称矩阵,所以α
T
ξ=0,即x
1
+x
2
一x
3
=0,于是λ
2
=一1,λ
3
=一1对应的线性无关的特征向量为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/3LU4777K
0
考研数学三
相关试题推荐
垄断的组织形式多种多样,而且不断发展变化,但是它们的本质都是
坚持总体国家安全观,必须统筹外部安全和内部安全、国土安全和国民安全、传统安全和非传统安全、自身安全和共同安全,完善国家安全制度体系。国家安全的基石是
明确中国特色社会主义最本质的特征是(),中国特色社会主义制度的最大优势是(),党是最高政治领导力量,提出新时代党的建设总体要求,突出()在党的建设中的重要地位。
据人民日报2021年9月7日评论员文章报道,近日,《横琴粤澳深度合作区建设总体方案》《全面深化前海深港现代服务业合作区改革开放方案》公开发布,就支持横琴粤澳深度合作区发展、推动前海合作区全面深化改革开放作出重要部署。这对于推动()建设取
据新华社2022年4月18日报道,一季度国内生产总值270178亿元,按不变价格计算,同比增长()——18日发布的2022年中国经济首季答卷显示,面对国际环境更趋复杂严峻和国内疫情频发带来的多重考验,中国经济迎难而上,开局总体平稳。当前
2020年8月15日,“绿水青山就是金山银山”理念提出15周年理论研讨会在浙江安吉县召开,与会专家学者和有关负责人就“两山”理念的实践成果、时代意义等进行研讨,并对进一步实践提出建议。与会专家认为,浙江15年的实践证明,“绿水青山就是金山银山”理念符合客观
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
(1)第一类曲线积分的积分弧L是_________的(定向、不定向);利用L的参数方程将这个积分化为定积分时,下限α必须____________上限β.(2)第二类曲线积分的积分弧L是____________的(定向、不定向);利用L的参数方程将这个积分
若当x→0时,(1+2x)x—cosx~ax2,则a=____________.
随机试题
温中回阳宜用温中止呕宜用
什么叫焊后热处理?焊后热处理的类型和目的是什么?
汉语中,调换词的排列顺序,正读、倒读都能成文的修辞格是()
通过选择性激动β1,受体而发挥正性肌力作用的药物是
非磁性高压钢管,一般采用的探伤方法有()。
人力资源培训开发的决策分析是在决定是否进行一项人力资源培训开发投资之前对()进行的权衡考虑。
“一朝被蛇咬,十年怕井绳”属于条件反射的()。
数据库管理系统中负责数据完整性、安全性定义的语言是( )。
下面关于C++流的叙述中,正确的是()。
Ontheheelsofitsrecentdecisiontocriminalizeconsumerswhoripsongsfromalbumstheyhavepurchasedtotheircomputers(or
最新回复
(
0
)