首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
History of weather forecasting Early methods Almanacs connected the weather with the positions of different【L31】________at p
History of weather forecasting Early methods Almanacs connected the weather with the positions of different【L31】________at p
admin
2022-09-09
55
问题
History of weather forecasting
Early methods
Almanacs connected the weather with the positions of different【L31】________at particular times.
Invention of weather instruments
A hydrometer showed levels of【L32】________, (Nicholas Cusa 1450)
Temperature variations — first measured by a thermometer containing【L33】________
(Galileo Galilei 1593)
A barometer indicated air pressure (Evangelista Torricelli 1645)
Transmitting weather information
The use of the【L34】________allowed information to be passed around the world.
Daily【L35】________were produced by France.
Producing a weather forecast
Weather observation stations are found mostly at【L36】________around the country.
Satellite images use the colour orange to show【L37】________
The satellites give so much detail that meteorologists can distinguish a particular【L38】________
Information about the upper atmosphere is sent from instruments attached to a【L39】________
Radar is particularly useful for following the movement of【L40】________
【L34】
I work for the National Weather Service and as part of your course on weather patterns, I’ve been asked to talk to you about how we predict the weather. We’re so used to switching on our TVs and getting an up-to-date weather forecast at any time of day or night that we probably forget that this level of sophistication has only been achieved in the last few decades and weather forecasting is actually an ancient art. So I want to start by looking back into history.
The earliest weather forecasts appeared in the 1500s in almanacks, which were lists of information produced every year.
Their predictions relied heavily on making connections between the weather and where the planets were in the sky
on certain days. In addition, predictions were often based on information like if the fourth night after a new moon was clear, good weather was expected to follow.
But once basic weather instruments were invented, things slowly started to change. In the mid-fifteenth century a man called Nicholas Cusa, a German mathematician,
designed a hygrometer which told people how much humidity there was in the air
. To do this, Cusa put some sheep’s wool on a set of scales and then monitored the change in the wool’s weight according to the air conditions.
A piece of equipment we all know and use is the thermometer. Changes in temperature couldn’t really be measured until the Italian Galileo Galilei invented his thermometer in 1593. It wasn’t like a modern-day thermometer because
it had water inside it
instead of mercury. In fact, it wasn’t until 1714 that Gabriel Fahrenheit invented the first mercury thermometer. In 1643 another Italian called Evangelista Torricelli invented the first barometer which measured atmospheric pressure. This was another big step forward in more accurate weather predicting.
As time went on, during the 17th, 18th and 19th centuries, all these meteorological instruments were improved and developed and people in different countries began to record measurements relating to their local weather. However, in those days it was very difficult to send records from one part of the world to another so
it wasn’t possible for them to share their information until the electric telegraph became more widespread
. This meant that weather observations could be sent on a regular basis to and from different countries. By the 1860s, therefore, weather forecasts were becoming more common and accurate because they were based on observations taken at the same time over a wide area.
In 1863, France started building weather maps each day
.
This hadn’t been done before, and other nations soon followed. So that was the start of national weather forecasting and I’ll now tell you how we at the National Weather Centre get the information we need to produce a forecast.
Even today, one of the most important methods we use is observations which tell us what the weather is doing right now. Observation reports are sent automatically from equipment at a number of weather stations in different parts of the country.
They are nearly all based at airports
although a few are in urban centres. The equipment senses temperature, humidity, pressure and wind speed and direction. Meteorologists also rely really heavily on satellites which send images to our computer screens. What we see on our screens is bright colours.
Orange represents dry air
and bright blue shows moisture levels in the atmosphere. The satellites are located 22,000 miles above the surface of the Earth and it’s amazing that despite that distance
it’s possible for us to make out an individual cloud
and follow it as it moves across the landscape.
In addition to collecting data from the ground, we need to know what’s happening in the upper levels of the atmosphere. So a couple of times a day from many sites across the country, we send radiosondes into the air.
A radiosonde is a box containing a package of equipment and it hangs from a balloon
which is filled with gas. Data is transmitted back to the weather station.
Finally, radar. This was first used over 150 years ago and still, is. New advances are being made all the time and it is
one method for detecting and monitoring the progress of hurricanes
. Crucial information is shown by different colours representing speed and direction. Radar is also used by aircraft, of course.
All this information from different sources is put into computer models which are like massive computer programs. Sometimes they all give us the same story and sometimes we have to use our own experience to decide which is showing the most accurate forecast which we then pass on to you. So I hope next time you watch the weather forecast, you’ll think about how we meteorologists spend our time. And maybe I’ve persuaded some of you to study meteorology in more depth.
选项
答案
(electric) telegraph
解析
本题询问什么的使用使得信息得以在世界范围内传播。录音原文中的it wasn’t possible…to share their information是题目中allow information to be passed…的同义表述,故空格处填A(electric)telegraph。
转载请注明原文地址:https://kaotiyun.com/show/71nD777K
本试题收录于:
雅思听力题库雅思(IELTS)分类
0
雅思听力
雅思(IELTS)
相关试题推荐
待排序的关键码序列为(15,20,9,30,67,65,45,90),要按关键码值递增的顺序排序,采取简单选择排序法,第一趟排序后关键码15被放到第()个位置。
请编写一个函数,函数的功能是删除字符串中的所有空格。例如,主函数中输入”asdafaaz67”,则输出为"asdafaaz67"。注意:部分源程序在文件PROG1.C中。请勿改动主函数mam和其他函数中的任何内容,仅在函数fun的
以下选项中表示一个合法的常量的是(说明:符号□表示空格)()。
在“xx.mdb”数据库中有“客人”和“城市”两张表。(1)在“客人”表中添加“民族”字段,字段大小为3,默认值为“汉”,设置所有客人的民族为“汉”。(2)设置城市和“客人”表的关系为一对多,实施参照完整性。(3)将“客人”表按照名
Animationmeansmakingthingswhicharelifelesscomealiveandmove.Sinceearliesttimes,peoplehavealwaysbeenastonish
PeoplewhotravelalotflywithHeavenAir,becausetheyknowtheywillgetwhattheywant.Theywanttogoquicklyandsafely
Whenshouldthewomandealwiththematter?
A、Correcttheirmistake.B、Improvetheirservice.C、Apologizetohiswife.D、Givethemoneyback.A
随机试题
正式领导
1.5岁山羊,发病近1个月,最初食欲减退,经常在放牧时阵发性转圈,逐渐消瘦,以后转圈次数逐渐增多,每次转圈时总是转向右侧,经用多种抗菌消炎药物无效。最近经常出现阵发性倒地惊叫,四肢游泳状划动该羊最可能患的是()。
17岁的中学生王小阳父母离异,王小阳与母亲孙某一起生活,王小阳由于侵权被起诉,孙某不愿意作为法定代理人出庭,王小阳的父亲王某也不愿意做王小阳的法定代理人,以下说法正确的是()
热拌沥青混合料的()摊铺温度应根据铺筑层厚度、气温、风速及下卧层表面温度按现行规范要求执行。
汉译英:“卸货港;集装箱”,正确的翻译为( )。
上市公司收购过渡期是指以协议方式进行上市公司收购,自签订收购协议起至相关股份完成过户的期间。在过渡期内,收购人不得通过控股股东提议改选上市公司董事会,确有充分理由改选董事会的,来自收购人的董事不得超过董事会成员的( )。
《中国人民银行法》中规定的我国货币政策的最终目标是()。
甲上市公司选举独立董事时,作为候选人之一的张某是乙股份有限公司的董事,且持有乙公司30%的股份。如果没有其他不符合规定的情形,下列选项中,张某可以担任甲公司独立董事的是()。
剥夺毛泽东对中央根据地红军领导权的会议是()
Doyouthinkthegirlgotherticket?
最新回复
(
0
)