首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续可导,f(1)=0,(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
设f(x)在[0,1]上连续可导,f(1)=0,(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
admin
2016-03-26
84
问题
设f(x)在[0,1]上连续可导,f(1)=0,
(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
选项
答案
由分部积分,得 [*] 于是[*]f(x)dx=-2. 由拉格朗日中值定理,得f(x)=f(x)一f(1)=f’(η)(x一1),其中η∈(x,1), f(x)=f’(η)(x一1)两边对x从0到1积分,得[*]f(x)dx=[*]f’(η)(x一1)dx=一2.因为f’(x)在[0,1]上连续,所以f’(z)在[0,1]上取到最小值m和最大值M, 由M(x一1)≤f’(η)(x-1)≤m(x一1)两边对x从0到1积分, 得一[*]≤[*]f’(η)(x一1)dx≤-[*],即m≤4≤M, 由介值定理,存在ξ∈[0,1],使得f’(ξ)=4.
解析
转载请注明原文地址:https://kaotiyun.com/show/76T4777K
0
考研数学三
相关试题推荐
历史上有“杞人忧天”的故事,用以形容为不可能发生的事情担心。但从科学角度看,它不仅不是庸人自扰,而且还提出了古代天文学领域的一个大问题——天为何掉不下来?几百年来,从“地心说”到“日心说”,再到万有引力定律,终于弄清了这个“假如”。由是观之,没有“假如”,
掌握“适度”原则的哲学依据是()。
解放战争时期,毛泽东在《在晋绥干部会议上的讲话》中对新民主主义革命的总路线作了完整的概括。这里所说的“完整”是指在革命的对象中增加了()。
设A是n×m矩阵,B是m×n矩阵,其中n
设β,α1,α2线性相关,β,α2,α3线性无关,则().
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
设δ>0,f(x)在(一δ,δ)内恒有(x)>0,且|f(x)|≤x2,记I=(x)dx,则有().
随机试题
王某教唆李某去抢劫银行,李某受到教唆后,因害怕受惩罚,未去银行抢劫。在此案中,王某、李某的行为()
对肝性脑病患者生化检测指标不会出现的是
下列关于脊髓灰质炎病毒,叙述错误的是
患者,女,45岁。大便8日未行,腹满痛,发热烦躁,舌苔焦黄,脉沉实有力。首选的药物是()
固结灌浆浆液稠度的控制程序是()。
2017年12月31日,甲公司建造了一座核电站达到预定可使用状态并投入使用,累计发生的资本化支出为210000万元。当日,甲公司预计该核电站在使用寿命届满时为恢复环境发生弃置费用10000万元,其现值为8200万元。该核电站的入账价值为()。
召公谏厉王弭谤厉王虐,国人谤王。召公告日:“民不堪命矣!”王怒,得卫巫,使监谤者。以告,则杀之。国人莫敢言,道路以目。王喜,告召公曰:“吾能弭谤矣,乃不敢言。”召公曰:“是障之也。防民之口甚于防川川壅而溃伤人必多民亦如之是故为川者决之使
儿童在10岁以后,判断是非对错的标准不只依据社会规则和对权威的遵从,开始受自己主观情感的判断标准支配。这说明儿童这个时期的道德判断特点是()。
There’snothingsimpleaboutguncontrol,atangleoflegal,politicalandpublic-healthissuescomplicatedbyculturalpreferen
Discussion--about5minutesInthispartofthetesttheexaminerreadsoutascenarioandgivesyousomepromptmaterialint
最新回复
(
0
)