首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明α1,α2,…,αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
证明α1,α2,…,αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
admin
2016-10-26
77
问题
证明α
1
,α
2
,…,α
s
(其中α
1
≠0)线性相关的充分必要条件是存在一个α
i
(1<i≤s)能由它前面的那些向量α
1
,α
2
,…,α
i-1
线性表出.
选项
答案
必要性.因为α
1
,α
2
,…,α
s
线性相关,故有不全为0的k
1
,k
2
,…,k
s
,使 k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0. 设k
s
,k
s-1
,…,k
2
,k
1
中第一个不为0的是k
i
(即k
i
≠0,而k
i+1
=…=k
s-1
=k
s
=0),且必有i>1(若i=1即k
1
≠0,k
2
=…=k
s
=0,那么k
1
α
1
=0.于是α
1
=0与α
1
≠0矛盾.),从而k
1
α
1
+k
2
α
2
+…+k
i
α
i
=0, k
i
≠0.那么α
i
=[*](k
1
α
1
+k
2
α
2
+…+k
i-1
α
i-1
). 充分性.因为有α
i
=l
1
α
1
+l
2
α
2
+…+l
i-1
α
i-1
,于是 l
1
α
1
+…+l
i-1
α
i-1
-α
i
+0α
i+1
+…+0α
s
=0. 又因l
1
,…,l
i-1
,一1,0,…,0不全为0,故α
1
,α
2
,…,α
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/7nu4777K
0
考研数学一
相关试题推荐
91
A、 B、 C、 D、 A
求下列函数的导数:
设一矩形面积为A,试将周长S表示为宽x的函数,并求其定义域。
计算曲线积分其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向.
考虑二元函数的下面4条性质:①f(x,y)在点(xo,yo)处连续;②f(x,y)在点(xo,yo)处的两个偏导数连续;③f(x,y)在点(xo,yo)处可微;④f(x,y)在点(xo,yo)处的两个偏导数存在.若用“P→Q”表示
设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
(I)依题意画图(如右图).由y=x2得yˊ=2x,任给a(0<a≤1),抛物线y=x2在点(a,a2)处的切线方程为y-a2=2a(x-a),该切线与x轴的交点为(a/2,0),[*]
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的
随机试题
急性心肌梗死发生心室颤动的先兆是
下列()情况,具有中国国籍。
用地类别代号R11和C11分别表示哪种用地?[2007-13]
出版含有诱发未成年人违法犯罪以及渲染暴力、色情、赌博、恐怖活动等危害未成年人身心健康内容的出版物的,由出版行政部门没收出版物和违法所得,并处违法所得()罚款。
《论语.里仁》中提到“君子喻于义,小人喻于利”,关于这一思想的评述,正确的一项是()。
1983年4月,中共中央和国务院决定加速海南岛的开发,1988年4月成立海南省,海南岛成为()。
有以下程序:#includemain(){inta[]={1,2,3,4},y,*P=&a[3];--p;y=*p;printf("y=%d\n",y);}程序的运行结果是()。
三个大小均为800K的文件直接保存到软盘上,至少需要容量为1.44MB的软盘 ( )
【B1】【B4】
Onhiswanderingshe’s______Spanish,Italian,FrenchandasmatteringofRussian.
最新回复
(
0
)