首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设随机变量X1,X2,…相互独立且服从同参数λ的泊松分布,则下面随机变量序列中不满足切比雪夫大数定律条件的是
假设随机变量X1,X2,…相互独立且服从同参数λ的泊松分布,则下面随机变量序列中不满足切比雪夫大数定律条件的是
admin
2016-10-26
47
问题
假设随机变量X
1
,X
2
,…相互独立且服从同参数λ的泊松分布,则下面随机变量序列中不满足切比雪夫大数定律条件的是
选项
A、X
1
,X
2
,…,X
n
,…
B、X
1
+1, X
2
+2,…, X
n
+n,…
C、X
1
,2X
2
,…,nX
n
,…
D、X
1
,
X
n
,…
答案
C
解析
切比雪夫大数定律的条件有三个:第一个条件要求构成随机变量序列的各随机变量是相互独立的.显然无论是X
1
,…,X
n
,…,还是X
1
+1, X
2
+2,…, X
n
+n,…,X
1
,2X
2
,…,nX
n
,…以及X
1
,
X
n
,…都是相互独立的;第二个条件要求各随机变量的期望与方差都存在.由于EX
n
=λ,DX
n
=λ,E(X
n
+n)=λ+n,D(X
n
+n)=λ,E(nX
n
)=nλ,D(nX
n
)=n
2
λ,E
,
.因此四个备选答案都满足第二个条件;第三个条件是方差DX
1
,DX
n
,…有公共上界,即DX
n
<c,c是与n无关的常数.对于(A):DX
n
=λ<λ+1;对于(B):D(X
n
+n)=DX
n
=λ<λ+1;对于(C):D(nX
n
)=n
2
DX
n
=n
2
λ没有公共上界;对于(D):D
λ<λ+1.
综上分析,只有(C)中方差不满足方差一致有界的条件,因此应选(C).
转载请注明原文地址:https://kaotiyun.com/show/8Qu4777K
0
考研数学一
相关试题推荐
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
用列举法表示下列集合:(1)方程x2-7x+12=0的根的集合(2)抛物线y=x2与直线x—y=0交点的集合(3)集合{x||x-1|≤5的整数}
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:第3把钥匙才打开门
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y"-2xy’-4y=0,y(0)=0,y’(0)=1.求y(x)的表达式.
设函数f(x)在(-∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d),记证明曲线积分I与路径无关;
设X1,X2,X3(n>1)是来自总体N(μ,σ)的随机样本,用2X2,-X1,及X1作总体参数μ为估计算时,最有效的是________.
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
若四阶矩阵A与B为相似矩阵,A的特征值为1/2、1/3、1/4、1/5,则行列式|B-1-E|=_________.
设有一容器由平面z=0,z=1及介于它们之间的曲面S所同成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒vn体积单位的均匀速度往该容器注水,并假设开始时容器是空的.求水表面上升速度最大
随机试题
Didyouexamineyourpapermoneyclosely?Seeifyoucanlocatea$5,$10,or$20billprintedbefore1964andmarked"Federal
女,8个月,因频繁呕吐、腹泻3天入院。大便稀水样,无腥臭味,10余次/日,量中等,查体:呼吸46次/分;脉搏140次/分,精神萎靡,皮肤弹性差,四肢温,前囟眼窝凹陷,心音低钝,腹胀,肠鸣音减弱,四肢无力,腱反射弱。化验:大便镜检WBC0~1/HP,血钠1
胶片感光乳剂层受光照射后发生的光化学反应是
口腔癌“无瘤”手术的要求不包括
实行会员分级结算制度的期货交易所,应当向结算会员收取结算担保金。()
迄今为止发展最快、渗透性最强、应用关键技术最广泛的行业是( )。
下列不是普契尼创作的歌剧的是()
Youshouldspendabout20minutesonthistask.Thetablebelowshowssocialandeconomicindicatorsforfourcountriesin1
Exercisehaslongbeentreatedasthecure-allforeverythingthatailsyou.Supporterssayyouwillloseweightandbringyour
Learningisanessentialprocessforlivingthingstoacquirenecessaryskillsandbehaviors.Scientistshavealreadyfoundthat
最新回复
(
0
)