首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
A、By visiting potential customers’ websites constantly. B、By posting messages on potential customers’ Facebook wall. C、By respon
A、By visiting potential customers’ websites constantly. B、By posting messages on potential customers’ Facebook wall. C、By respon
admin
2012-08-05
40
问题
These days, if you’re in business, have made a name for yourself or want to make a name for yourself, you need to be on Facebook. Why? Let me explain. (26)Back in the 1980s, if your business wasn’t listed in the phonebook, you had to rely on word of mouth to be discovered by potential new customers. Then along came the Internet and slowly businesses started putting up websites. (27) It was great because you could put a lot more information on a website than you could in a small ad in the Yellow Pages. If you don’t, you’re losing out on a lot of potential businesses. As a consumer, I’ve found Facebook to be an excellent way to interact with companies. Instead of calling customer service and then being put on hold forever, only to be connected with someone who can barely speak English, I can post a message on their Facebook wall or send them a message. Companies are a lot more responsive, especially if you have a complaint, and if it’s out there for the whole world to see. But it’s not just lodging complaints that Facebook is good for. Since Facebook is a site that people visit every day, (28)you can use your account to constantly put out information about your company. This will keep your company fresh in their mind, more often than if you just had a website because they’d only visit it when they need to. Social media is like commercials on television for a business; you can get your information on the streams of thousands even millions of people easily and for free.
26. How could companies be discovered by new customers if they were not listed in the phonebook in the 1980s?
27. Why is it good to start businesses on websites?
28. How do people keep their company fresh in potential customers’ mind by Facebook?
选项
A、By visiting potential customers’ websites constantly.
B、By posting messages on potential customers’ Facebook wall.
C、By responding potential customers’ complains online.
D、By using account to put out business information constantly.
答案
D
解析
事实细节题。短文最后提到人们不断地更新公司的业务信息,这样可以使潜在客户的头脑中保存有他们公司的最新信息。
转载请注明原文地址:https://kaotiyun.com/show/A9b7777K
0
大学英语六级
相关试题推荐
A、Findsomethingyouarepassionateabout.B、Learnhowtorunabusiness.C、MakeabusinessOutofsomething.D、Learnhowtoman
Theargumentconcerningtheuse,orthestatus,ortherealityofblackEnglishisrootedinAmericanhistoryandhasabsolutely
A、Healthypeoplearemoreinterestedingettingmarried.B、Happypeopledonotalwaysgetmarried.C、Marriedpeoplemaynotbei
Whiletheworld’sflufightershaveconcentratedoncounteringtheH1N1swineflu,birdfluH5N1hasquietlycontinuedtotakei
Whiletheworld’sflufightershaveconcentratedoncounteringtheH1N1swineflu,birdfluH5N1hasquietlycontinuedtotakei
A、Shehasfinishedherdissertation.B、Themanbecamethechairofthedepartment.C、Thereissomethingabouttheirschoolandp
A、Single-sexstoresappealtocustomersbetter.B、Single-sexstorescan’tperformwell.C、Itishardtoarrangeasingle-sexsto
A、Agreatcharacterinhistory.B、Atheatricalroleinaplay.C、Aspecialsymbolinlife.D、Animaginarypersoninafiction.D
Ihadbeenpuzzledovertheproblemforoveranhourwithoutanyresultwhenallatoncethesolution_________acrossmymind.
A、Arrangingabedforapatient.B、Rescuingthewoman’suncle.C、Acomplicatedsurgicalcase.D、Preparationsforanoperation.A
随机试题
病理性冲动传导异常包括
精神抑郁,表情淡漠,神识痴呆,举止失常,舌苔白腻者,最宜诊断为
下列关于碱裂解法的说法,哪项是错误的?()
某元素正二价离子(M2+)的外层电子构型是3s23p6,该元素在元素周期表中的位置是()。
某架空送电线路采用单导线,导线的最大垂直荷载为25.5N/m,导线的最大使用张力为36900N,导线的自重荷载为14.81N/m,导线的最大风时风荷载为12.57N/m。直线塔所在耐张段在最高气温下导线最低点张力为26.87kN,当一侧垂直档距为Lv=
乙公司生产M产品,采用标准成本法进行成本管理。月标准总工时为23400小时,月标准变动制造费用总额为84240元。工时标准为2.2小时/件。假定乙公司本月实际生产M产品7500件,实际耗用总工时15000小时,实际发生变动制造费用57000元。要求:
甲持有某有限责任公司全部股东表决权的9%,因公司管理人员拒绝向其提供公司账本,甲以其知情权受到损害为由,提起解散公司的诉讼。为此,人民法院不予受理。()(2014年)
目前,研究人员发明了一种弹性超强的新材料,这种材料可以由1英寸被拉伸到100英寸以上,同时这一材料可以自行修复且能通过电压控制动作。因此研究者认为,利用该材料可以制成人工肌肉,替代人体肌肉,从而为那些肌肉损伤后无法恢复功能的患者带来福音。以下哪项如果为真
已知函数f(x)在[0,1]上连续,在(0,1)内可导,f(0)=f(1)=0,且存在点x0∈(0,1)使f(x0)>x0.证明:存在ξ∈(0,1),使得f’(ξ)=1.
A、Nepal.B、Himalaya.C、Bhutan.D、NewZealand.C信息题。录音中提到“In2004,Bhutanbannedtobaccoaltogether.”。只要注意年份并不难听出答案。
最新回复
(
0
)