首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(x0-δ,x0+δ)有n阶连续导数,且f(k)(x0)=0,k=2,3,…,n-1;f(n)(x0)≠0.当0<|h|<δ时,f(x0+h)-f(x0)=hf’(x0+θh),(0<θ<1).求证:.
设f(x)在(x0-δ,x0+δ)有n阶连续导数,且f(k)(x0)=0,k=2,3,…,n-1;f(n)(x0)≠0.当0<|h|<δ时,f(x0+h)-f(x0)=hf’(x0+θh),(0<θ<1).求证:.
admin
2017-07-10
42
问题
设f(x)在(x
0
-δ,x
0
+δ)有n阶连续导数,且f
(k)
(x
0
)=0,k=2,3,…,n-1;f
(n)
(x
0
)≠0.当0<|h|<δ时,f(x
0
+h)-f(x
0
)=hf’(x
0
+θh),(0<θ<1).求证:
.
选项
答案
这里m=1,求的是f(x
0
+h)-f(x
0
)=hf’(x
0
+θh)(0<θ<1)当h→0时中值θ的极限.为解出θ,按题中条件,将f’(x
0
+θh)在x=x
0
展开成带皮亚诺余项的n-1阶泰勒公式得 [*] 代入原式得 f(x
0
+h)-f(x
0
)=hf’(x
0
)+[*]f
(n)
(x
0
)θ
n-1
h
n
+o(h
n
) ① 再将f(x
0
+h)在x=x
0
展开成带皮亚诺余项的n阶泰勒公式 f(x
0
+h)-f(x
0
)=f’(x
0
)h+…+[*] (x
0
)h
n
+o(h
n
) =f’(x
0
)h+[*] (x
0
)h
n
+o(h
n
)(h→0), ② 将②代入①后两边除以h
n
得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/AYt4777K
0
考研数学二
相关试题推荐
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
设f(x)为单调函数且二阶可导,其反函数为g(x),又f(1)=2,,f〞(1)=1.求gˊ(2),g〞(2).
设f(x)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一点ε,使得
在yOx面上,求与A(3,1,2),B(4,-2,-2)和C(0,5,1)等距的点.
证明曲线有位于同一直线上的三个拐点.
求在抛物线y=x2上横坐标为3的点的切线方程.
f(x)连续,且f(0)≠0,求极限
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
求极限.
求极限
随机试题
市场营销策划的特点包括()
—DoyouknowwhatTomdoesallday?—IknowhespendsatleastasmuchtimewatchingTVashe______hislessons.
A.NAP强阳性B.t(9,22)(q34,q11)C.PAS阳性D.POX阳性E.非特异酯酶阳性,能被NaF抑制急性单核细胞白血病
患者,男,70岁。咳嗽、咳痰,伴痰中带血3个月。胸片提示右肺门类圆形阴影,边缘毛躁,有分叶。肺癌非转移胸外表现(副癌综合征)有哪些
案件进入审判阶段后,辩护律师可以享有哪些权利?
关于粗集料表观密度、针片状颗粒含量、磨光值、洛杉矶磨耗、坚同性试验方法,请回答以下问题。关于粗集料坚固性试验,描述正确的有()。
(2006年)图5-24所示的矩形截面和正方形截面具有相同的面积。设它们对对称轴y的惯性矩分别为Iya、Iyb,对对称轴z的惯性矩分别为Iza、Izb,则()。
不可否认,特殊类型招生是我国在一定历史阶段的产物,它曾经对经济社会和教育的发展发挥过重要作用。但随着时代的变迁,我们有必要对招生制度作出调整和规范,以更好适应环境的变化和社会的需求。表面看,给保送“瘦身”,再加上对高考加分政策的一再收紧,意味着“特殊通道”
正确的SQL插入命令的语法格式是
Youshouldspendabout20minutesonQuestions28-41whicharebasedonReadingPassage3below.T
最新回复
(
0
)