首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(x0-δ,x0+δ)有n阶连续导数,且f(k)(x0)=0,k=2,3,…,n-1;f(n)(x0)≠0.当0<|h|<δ时,f(x0+h)-f(x0)=hf’(x0+θh),(0<θ<1).求证:.
设f(x)在(x0-δ,x0+δ)有n阶连续导数,且f(k)(x0)=0,k=2,3,…,n-1;f(n)(x0)≠0.当0<|h|<δ时,f(x0+h)-f(x0)=hf’(x0+θh),(0<θ<1).求证:.
admin
2017-07-10
69
问题
设f(x)在(x
0
-δ,x
0
+δ)有n阶连续导数,且f
(k)
(x
0
)=0,k=2,3,…,n-1;f
(n)
(x
0
)≠0.当0<|h|<δ时,f(x
0
+h)-f(x
0
)=hf’(x
0
+θh),(0<θ<1).求证:
.
选项
答案
这里m=1,求的是f(x
0
+h)-f(x
0
)=hf’(x
0
+θh)(0<θ<1)当h→0时中值θ的极限.为解出θ,按题中条件,将f’(x
0
+θh)在x=x
0
展开成带皮亚诺余项的n-1阶泰勒公式得 [*] 代入原式得 f(x
0
+h)-f(x
0
)=hf’(x
0
)+[*]f
(n)
(x
0
)θ
n-1
h
n
+o(h
n
) ① 再将f(x
0
+h)在x=x
0
展开成带皮亚诺余项的n阶泰勒公式 f(x
0
+h)-f(x
0
)=f’(x
0
)h+…+[*] (x
0
)h
n
+o(h
n
) =f’(x
0
)h+[*] (x
0
)h
n
+o(h
n
)(h→0), ② 将②代入①后两边除以h
n
得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/AYt4777K
0
考研数学二
相关试题推荐
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
求下列各极限:
用导数的定义求下列函数的导(函)数:
求曲线在拐点处的切线方程.
计算y=e-x与直线y=0之间位于第一象限内的平面图形绕x轴旋转产生的旋转体的体积.
求下列函数在指定点处的导数
曲线的渐近方程为________.
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求n的值;
f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.求二次型f的矩阵的所有特征值;
随机试题
生产中,应尽量采用先装后焊接的方法来增加结构的刚度,以控制焊接变形。
为降低胆红素浓度,防止或减轻核黄疸,简单而有效的方法是
用于疟疾病因性预防的首选药是选择性的解受体激动剂是
患者,男,35岁。缺失3个月,要求固定修复。如果近中倾斜,该牙用做固定桥基牙的最大障碍是
保税物流中心(B型)仓储面积,东部地区不低于()平方米,中西部不低于()平方米。
采用累计实际发生的合同成本占合同预计总成本的比例确定合同完工进度的,累计实际发生的合同成本包括的内容有()。
当领队与团内旅游者之间产生矛盾时,地陪的正确做法是()。
下列白酒中属于浓香型的有()。
上海某出版社与国外某出版公司在北京签订了一份著作权贸易合同,按规定应报()审核登记。
A、13million.B、7million.C、3million.D、30million.C
最新回复
(
0
)