首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)求矩阵A的特征值; (2)判断矩阵A可否对角化.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)求矩阵A的特征值; (2)判断矩阵A可否对角化.
admin
2015-07-10
36
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
(1)求矩阵A的特征值;
(2)判断矩阵A可否对角化.
选项
答案
(1)因为α
1
,α
2
,α
3
线性无关,所以α
1
+α
2
+α
3
≠0, 由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),得A的一个特征值为λ
1
=2; 又由A(α
1
-α
2
)=一(α
1
-α
2
),A(α
2
-α
3
)=一(α
2
-α
3
),得A的另一个特征值为λ
2
=一1.因为α
1
,α
2
,α
3
线性无关,所以α
1
-α
2
与α
2
-α
3
也线性无关,所以λ
2
=一1为矩阵A的二重特征值,即A的特征值为2,一1,一1. (2)因为α
1
-α
2
,α
2
-α
3
为属于二重特征值一1的两个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/BkU4777K
0
考研数学三
相关试题推荐
在新的历史条件下,我们党面临着执政、改革开放、()“四大考验”,同时面临着精神懈怠、能力不足、()“四大危险”。
法律权利是指反映一定的社会物质生活条件所制约的行为自由,是法律所允许的权利人为了满足自己的利益而采取的、由其他人的法律义务所保证的法律手段。法律权利的特征是
辛亥革命、国民革命、共产革命是中国革命过程中相互衔接、演进的三个阶段,前一次革命为后一次革命“预留”了空间,后一次革命在前一次革命的基础上推进。正是这三次革命的相互关联、递进,共同构建了“中国革命”这一历史事件。近代中国革命的主要形式是
习近平指出:“照抄照搬他国的政治制度行不通,会水土不服,会画虎不成反类犬,甚至会把国家前途命运葬送掉。只有扎根本国土壤、汲取充沛养分的制度,才最可靠、也最管用。”新中国成立70多年的实践充分证明,中国特色社会主义政治制度具有强大生命力,中国特色社会主义政治
掷一枚骰子,观察其出现的点数,A表示“出现奇数点”,B表示“出现的点数小于5”,C表示“出现的点数是小于5的偶数”,用集合列举法表示下列事件:Ω,A,B,C,A+B,A-B,B-A,AB,AC,+B.
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
设A,B是同阶正定矩阵,则下列命题错误的是().
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
将函数f(x)=e2x,x∈[0,π]展开成余弦级数.
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.求可逆矩阵P,使得P-1AP为对角矩阵.
随机试题
A.羊膜、叶状绒毛膜、底蜕膜B.初级绒毛、二级绒毛、三级绒毛C.绒毛膜、羊膜D.胎盘、胎膜、脐带、羊水E.真蜕膜、包蜕膜、底蜕膜胎盘的组成包括
下列哪一项是肝清除胆固醇的主要方式
下列属于记账凭证审核内容的是()。
新产品开发过程的首要步骤是()。
在不考虑其他因素的情况下,下列各方中不构成甲公司关联方的是()。
儿童已经明白成人不在视野范围内还会陆续出现,所以他们以“母亲”为安全保障,在新环境中探索、冒险,然后又回来寻求保护,此时该儿童的依恋属于()
教育随笔
问卷调查法
【S1】【S6】
NarratorListentopartofadiscussioninanastronomyclass.Nowgetreadytoanswerthequestions.Youmayuseyour
最新回复
(
0
)