首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维非零向量α不是二阶方阵A的特征向量. 若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设二维非零向量α不是二阶方阵A的特征向量. 若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
admin
2017-12-23
167
问题
设二维非零向量α不是二阶方阵A的特征向量.
若A
2
α+Aα-6α=0,求A的特征值,讨论A可否对角化;
选项
答案
由A
2
α+Aα-6α=0,得(A
2
+A-6E)α=0, 因为α≠0,所以r(A
2
+A-6E)<2,从而|A
2
+A-6E|=0,即 |3E+A|.|2E-A|=0,则|3E+A|=0或|2E-A|=0. 若|3E+A|≠0,则3E+A可逆,由(3E+A)(2E-A)α=0,得 (2E-A)α=0,即Aα=2α,矛盾; 若|2E-A|≠0,则2E-A可逆,由(2E-A)(3E+A)α=0,得 (3E+A)α=0,即Aα=-3α,矛盾,所以有|3E+A|=0且|2E-A|=0,于是二阶矩阵A有两个特征值-3,2,故A可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Bmk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 B
A、 B、 C、 D、 D
[*]应先在xy平面上用阴影标出(X,Y)联合分布密度函数不等于0的部分,同时画出直线x+y=z=常数,根据与阴影部分相交的不同情况分为有关不同z的5种情况,然后进行计算.
生产某种产品必须投入两种要素,x1与x2分别为两要素的投入量,Q为产出量;若生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1.假设两要素的价格分别为声p1和p2,试问当产出量为12时,两要素各投入多少可以使得投入总费用最小?
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成。将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为103g/m3)
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设A为n阶非奇异矩阵,a为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
作自变量替换,把方程变换成y关于t的微分方程,并求原方程的通解.
设X,Y是离散型随机变量,其联合概率分布为P{X=xi,Y=yj}=pij(i,j=1,2,…),边缘概率分别为piX和pjY(i,j=1,2,…),则X与Y相互独立的充要条件是pij=piXpjY(i,j=1,2,…)
随机试题
肝前性黄疸见于下列哪些疾病
患者,女性,32岁,5天前出现发热、乏力、恶心、食欲下降,查巩膜轻度黄染,肝肋下1cm,质软,ALT760U/L,总胆红素54μmol/L,考虑该患者为“病毒性肝炎”。对于一直由其照顾的5岁的儿子,恰当的措施是
A.卵巢肿瘤B.子宫颈癌C.会阴血肿D.滴虫性阴道炎E.前置胎盘阴道、宫颈上药常用于
病人李某,因车祸造成大出血,现急需大量输血。输血的目的是增加()
用友软件中,下列账套信息建立后,不能更改的是()。
以下说法中,错误的是()。
(复旦大学2014)举例说明买空和买空交易机制如何放大收益和风险。
Televisionisthemosteffectivebrainwashingmediumeverinventedbyman.Advertisersknowthistobe【C1】______.Childrenarea
ForyearswehavebeentalkingaboutaddictiontotheInternet,andthentothemobilephone.ArecentsurveyinUKfoundthat_
WherearetheOlympicGamesheld?
最新回复
(
0
)