设函数f(x)对于闭区间[a,b]上的任意两点x,y,恒有|f(x)-f(y)|≤L|x-y|,其中L为正的常数,且f(a)·f(b)<0.证明:至少有一点ε∈(a,b),使得f(ε)=0.

admin2011-11-19  53

问题 设函数f(x)对于闭区间[a,b]上的任意两点x,y,恒有|f(x)-f(y)|≤L|x-y|,其中L为正的常数,且f(a)·f(b)<0.证明:至少有一点ε∈(a,b),使得f(ε)=0.

选项

答案【证】 首先证明函数是连续函数.设x。是(a,b)内任意一点,x∈(a,b),则 0≤|f(x)-f(x。)|≤L |x-x。|, 从而[*],即函数f(x)在(a,b)内连续;类似可证f(x)在闭区间[a,b]端点连续,所以f(x)在闭区间[a,b]上连续. 又f(a)×f(b)<0,由零点定理可知:至少有一点ε∈(a,b),使得f(ε)=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/CjF4777K
0

相关试题推荐
最新回复(0)