首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量(X,Y)的联合概率密度为 (Ⅰ)求随机变量Y关于X=x的条件密度; (Ⅱ)讨论随机变量X与Y的相关性和独立性.
设随机变量(X,Y)的联合概率密度为 (Ⅰ)求随机变量Y关于X=x的条件密度; (Ⅱ)讨论随机变量X与Y的相关性和独立性.
admin
2017-11-22
70
问题
设随机变量(X,Y)的联合概率密度为
(Ⅰ)求随机变量Y关于X=x的条件密度;
(Ⅱ)讨论随机变量X与Y的相关性和独立性.
选项
答案
(Ⅰ)先求X的边缘密度.对任意x>0,有 f
X
(x)=∫
—∞
+∞
f(x,y)dy=[*]∫
x
+∞
(y
2
一x
2
)e
—y
dy =[*]∫
x
+∞
y
2
de
—y
+[*]x
2
∫
—∞
+∞
de
—y
=[*](y
2
e
—y
+2ye
—y
+2e
—y
)|
x
+∞
—[*]x
2
e
—x
=[*](x
2
e
—x
+2xe
—x
+2e
—x
一x
2
e
—x
) =[*](1+x)e
—x
; 对于任意x≤0,有一x<y<+∞,因此 f
X
(x)=[*]∫
—x
+∞
(y
2
一x
2
)e
—y
dy =[*](y
2
e
—y
+2ye
—y
+2e
—y
)|
—x
+∞
—[*]x
2
e
x
=[*](x
2
e
x
—2xe
x
+2e
x
)一[*]x
2
e
x
=[*](1一x)e
x
=[*](1+|x|)e
—|x|
. 于是,X的边缘密度f
X
(x)=[*](1+|x|)e
—|x|
,一∞<x<+∞. 故对于任意x,随机变量Y关于X=x的条件密度为 [*] (Ⅱ)为判断独立性,需再求Y的边缘密度 [*] 由于f
X
(x).f
Y
(y)≠f(x,y),故X,Y不独立. 又EXY=∫
—∞
b
xyf(x,y)dxdy=[*]∫
υ
+∞
[ye
—y
∫
—y
y
x(y
2
一x
2
)dx]dy=0, EX=∫
—∞
+∞
xf
X
(x)dx=[*]∫
—∞
+∞
(1+|x|)e
—|x|
dx=0. 所以cov(X,Y)=EX—Y—E.Y.EY=0.从而可知X与Y既不独立,也不相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/CnX4777K
0
考研数学三
相关试题推荐
已知f(x,y)=,设D为由x=0、y=0及x+y=t所围成的区域,求F(t)=
设有20人在某11层楼的底层乘电梯上楼,电梯在途中只下不上,每个乘客在哪一层下等可能,且乘客之间相互独立,求电梯停的次数的数学期望.
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解.
设X~N(1,σ2),Y~N(2,σ2)为两个相互独立的总体,X1,X2,…,Xm与Y1,Y2,…,Yn分别为来自两个总体的简单样本,服从________分布.
设{an}与{bn}为两个数列,下列说法正确的是().
已知矩阵相似.求一个满足P-1AP=B的可逆矩阵P.
求V(t)=((t一1)y+1)dxdy的最大值,其中Dt={(x,y)|x2+y2≤1,≤y≤1},2≤t≤3.
设f(x)在[0,1]上连续,(0,1)内可导,且f(0).f(1)>0,f(1)+∫01f(x)dx=0.试证:至少存在一点ξ∈(0,1),使f’(ξ)=ξf(ξ).
求方程=(1一y2)tanx的通解以及满足y(0)=2的特解.
下列选项中正确的是()
随机试题
女,17岁。半年前肥胖,因过分担心发胖开始节食。开始不吃肉类,后来不吃米饭,现在只喝少许菜汤,一天只吃一个苹果,多吃一点就呕吐。体重明显下降,月经停止。该患者最可能的诊断是
酰胺类生物碱是( )。
单纯性肠梗阻与绞窄性肠梗阻的主要区别是
缴存住房公积金的工资基数是职工本人上一年度月平均工资,主要包括()等特殊情况下支付的工资。
在城市燃气管网系统中用来调节和稳定管网~,90的设施,称作()。
上网发行资金申购过程中,网上发行与网下发行的衔接可通过( )实现。
以音乐主题为基础音调,在保持原特点的前提下不断使其变化、发展的手法是________。
“君子欲化民成俗,其必由学乎”“古之王者,建国君民,教学为先”体现了()的教育目的观。
下列有关气象及灾害的说法正确的是()。
丑是一种文化现象,被文化所规定。文化世界以多种方式呈现,其中之一是感性形象。美学就是从感性形象方面去把握文化的。从美学角度看,美是高于正常的理想形象,丑是低于正常的畸形形象。一旦确立了正常的标准,美与丑随之产生出来。俯仰历史,具体的正常、美、丑不断地被建构
最新回复
(
0
)