首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
请依据以下《课标》要求和素材撰写一份侧重创新意识培养的教学过程设计。(只要求写教学过程) 《义务教育数学课程标准(2011年版)》指出创新意识培养是现代数学教育的基本任务,应体现在数学教与学的过程中,学生自邑发现和提出问题是创新的基础,独立思考、学
请依据以下《课标》要求和素材撰写一份侧重创新意识培养的教学过程设计。(只要求写教学过程) 《义务教育数学课程标准(2011年版)》指出创新意识培养是现代数学教育的基本任务,应体现在数学教与学的过程中,学生自邑发现和提出问题是创新的基础,独立思考、学
admin
2015-12-18
56
问题
请依据以下《课标》要求和素材撰写一份侧重创新意识培养的教学过程设计。(只要求写教学过程)
《义务教育数学课程标准(2011年版)》指出创新意识培养是现代数学教育的基本任务,应体现在数学教与学的过程中,学生自邑发现和提出问题是创新的基础,独立思考、学会思考是创新的核心,归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。
素材:观察下列算式的得数
1=1
2
1+3=2
2
1+3+5=3
2
1+3+5+7=4
2
…
(1)请你猜想1+3+5+7+9=
(2)验证1+3+5+7+9+11=
(3)请你将猜想到的规律用含有自然数n(大于等于1)的代数式表达出来。
选项
答案
教学过程: (一)情景引入 师:同学们好!在今天的课程正式开始之前,老师想要和大家一起讨论一个问题,当然,大家不用害怕,这个问题是所有人都会回答的。大家同意吗? 生:同意(点头)。 师:哪个历史人物最让大家佩服喜欢? 生:自行讨论(鲁迅、成吉思汗、毛主席……)。 请两个学生进行回答。 师:同学们说了那么多伟人了,这些人老师也很喜欢很佩服呢。那么除了这些伟人们,同学们有知道在数学方面有很大成就的人吗?我想在我们博学多才的同学们心中一定是有这样的人物的,是不是? 生:是。 师:同学们都很厉害的。老师现在跟同学们说一个老师佩服的人,看看大家谁是知道他的。这个人的名字就叫作杨辉。哪位同学知道这个人物呢? 生:讨论。 请学生进行回答。 生:杨辉是南宋的数学家,他发明了杨辉三角。 师:这位同学回答的非常好。我国南宋数学家杨辉写了一本书,叫作《详解九章算术》,在这本书中他用一个三角形的图来解释二项和的乘方规律,这个三角形就是我们常说的杨辉三角,而在欧洲直到1623年以后,法国数学家帕斯卡才在13岁时发现了“帕斯卡三角”。看看,我们中国人厉害吧! 生:回应老师的解说。 师:下面我们就来看看这个非常著名的杨辉三角,也叫作帕斯卡三角(出示课件)。 *] 师:杨辉三角存在着很多很多好玩的性质和规律,如果你发现了这里面的规律,那么你就能够将这个三角形无限的扩大补充下去。这是不是很有意思呢? 那么,今天就让老师和大家一起来研究这里面的规律。 (二)探索新知 师:从现在开始,同学们请以学习小组为单位,讨论并回答以下问题,得出结论的小组请自觉停止讨论并举手示意。 教师出示问题(课件): 问题1:杨辉三角每一行都由几个数字组成?这些数字有什么样的规律? 学生观察讨论,讨论后举手。 大多数学生停止讨论并举手后,教师等待片刻示意停止讨论,并请同学回答问题。 生:第一行有1个数字,第二行有3个数字,第三行有5个数字……这些数字都是奇数。 师:有没有其他小组有其他的答案? 环视教室,没有其他答案,示意同学坐下。 师:如果没有其他答案,那么我们继续下面的问题。 问题2:杨辉三角的前一行共有几个数字?前两行共有几个数字?前三行共有几个数字?前四行共有几个数字? 学生观察讨论,讨论后举手。 大多数学生停止讨论并举手后,教师等待片刻示意停止讨论,并请同学回答问题。 生1:前一行有1个数字,前两行有1+3=4数字,前三行有l+3+5=9个数字,前四行有1+3+5+7=16个数字。 师:他的答案和大家的一样吗? 生:一样。 师:他的列式和大家的一样吗? 生:一样。 师:好.这样的答案是对的。但是这个问题实在是太简单了,考不倒我们的同学,现在老师要增加难度。 问题3:1=?1+3=?1+3+5=?1+3+5+7=?不用直接的加法,怎么能够得到答案。 学生观察讨论,讨论后举手。 大多数学生停止讨论并举手后,教师等待片刻示意停止讨论,并请同学回答问题,并且板演。 生1:1=1,1+3=*]=16。这是个有规律的数列,可以用高斯计算1+2+3+…+100的方法进行计算。 生2:1=1=1
2
,1+3=4=2
2
,1+3+5=9=3
2
,1+3+5+7=16=4
2
。我是根据得数自己找出来的规律,我觉得这个方法对于更多的数字相加更加的简单。 师:两位同学说得都非常的好。同学们还有其他的方法吗? 生:摇头。 师:看着这两位同学的计算过程,同学们更喜欢哪一种? 生:第二种。 师:那么同学们,按照第二种的方法,我们来猜想一下1+3+5+7+9=? 生(一起回答):5
2
。 师:那么1+3+5+7+9+11=? 生(一起回答):6
2
。 师:答案对不对啊?别再按照规律说,结果数字多了出错了,同学们来验证一下吧。 学生们动手验算,示意教师结果正确。 师:真的是对的啊,那么这么计算很快呢。可是这个规律到底是什么啊?那位同学给老师详细地说一说。老师还不是很明白呢。 学生回答。 生:1+3+5+7+…这样一直加下去,也就是说我们从1这个奇数开始一个一个加下去,一共有几个数,那么结果就是几的平方。 师:同学们说,他说得对不对? 生:对。 师:回答得非常好!看来同学们都明白了这个规律。知道怎么去计算这样很有规律的算式的和了。下面来看看我们的最后一个问题吧。 问题4:请你将猜想到的规律用含有自然数n(大于等于1)的代数式表达出来。 题目较难,学生需要一段时间的思考和验算。 教师出示提示课件:怎么用字母n(n大于等于1)表示奇数? 学生观察讨论,讨论后举手。 大多数学生停止讨论并举手后,教师等待片刻示意停止讨论,并请同学回答问题,并且板演。 师:先来回答“怎么用字母n(n大于等于1)表示奇数?” 生1:2n+1。 生2:2n-1。 师:哪位同学的答案正确? 生:第二个。有要求的,要求n大于等于1。 师:回答得很好。我们在做题的时候一定要注意,题目中的限定性条件。 师:现在来回答问题4吧。 生1:1+3+5+7+…+(2n-1)=n
2
。 生2:1+3+5+7+…+(2n-1)=n
2
。 生3:1+3+5+7+…+(2n-1)=n
2
。 师:大家说,这个答案对不对? 生(一起回答):对。 师:我们今天要讨论的关于杨辉三角的规律,到现在为止我们已经找到并且记住了呢。 (三)巩固新知 例1:1+3+5+7+…+89=? 解:2n-1=89, 所以n=45. 所以1+3+5+7+….+89=45
2
=-2025。 例2:9+11+13+…+187=? 解:9+11+13+…+187=(1+3+5+…+187)一(1+3+5+7) 而2n—1=187, 所以n=94. 所以1+3+5+…+187=94
2
=8836。 同理1+3+5+7=16。 所以9+11+13+…+187=(1+3+5+…+187)一(1+3+5+7)=8820。 (四)拓展训练 练习1:1+3+5+7+…+289=? 练习2:21+23+25+27+…+1289=? 练习3:(1+3+5+7+…+989)+(123+125+127+…+189)=? (五)本课小结 同学们来一起总结一下这节课我们学习到的知识吧。 (1)杨辉三角。 (2)奇数相加的规律。 (3)利用规律进行计算解题。 (六)作业布置 请同学们回家在今天这节课的基础上,再找到一个关于杨辉三角的规律或者性质。
解析
转载请注明原文地址:https://kaotiyun.com/show/E3Gq777K
本试题收录于:
小学数学题库教师公开招聘分类
0
小学数学
教师公开招聘
相关试题推荐
——Wouldyoulike____moretea?——Thankyou.I’vehad_____.
Everystudenthasfreeaccesstoalltheresourcesinthelibrary.
根据《义务教育英语课程标准(2011年版)》,小学高年级的终结性评价可合理采用______的方式,考查学生基本的理解和表达能力。
以下是小学英语某教材单元第二页的学习内容,请仔细阅读该页,并回答后面五个问题。(1)本单元的标题是“Thereisabigbed”。根据本页内容,你判断本单元所学语言的交际功能是什么?要完成该交际功能所需要的主要语言结构是什么?(2分)
一张桌子上摆放着若干个碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有()碟子。
二次函数y=-3x2+6x+1的图象如何移动就得到y=-3x2的图象()。
两个自然数差是5,其最小公倍数与最大公约数的差是203,则这两个数的和是________________。
某射手每次射击击中目标的概率是,且各次射击的结果互不影响。(1)假设这名射手射击5次,求恰有2次击中目标的概率:(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率。
设不等式x2-x≤0的解集为M,函数f(x)=ln(1-∣x∣)的定义域为N,则M∩N为
已知集合A={x|x<a},B={x|1<x<2},要使A∪=R,则实数a的取值范围是()。
随机试题
A、局部鲜红、边缘清楚,一般不化脓B、常有局部反复发作史C、两者均存在D、两者均不存在急性蜂窝织炎______。
血清碱性磷酸酶明显升高,可见于哪种黄疸
肾动脉造影的主要用途有
关于小脑的叙述,正确的是
吸气性呼吸困难的特点不包括
直接标价法是用一定单位的本国货币来计算应收若干单位的外国货币。()
为了适应过程,在明亮灯光下时最好带上()。
城市产生的社会经济基础为()。
国家经济实力的大小,通常从()方面来衡量。
设向量组α1,α2,…,αm线性相关,且α1≠0,证明存在某个向量αk(2≤k≤m),使αk能由α1,α2,…,αk-1线性表示.
最新回复
(
0
)