首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1。线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则【 】
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1。线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则【 】
admin
2015-09-12
35
问题
设向量β可由向量组α
1
,α
2
,…,α
m
线性表示,但不能由向量组(Ⅰ):α
1
,α
2
,…,α
m-1
。线性表示,记向量组(Ⅱ):α
1
,α
2
,…,α
m-1
,β,则【 】
选项
A、α
m
不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示.
B、α
m
不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示.
C、α
m
可由(Ⅰ)线性表示,也可由(Ⅱ)线性表示.
D、α
m
可由(Ⅰ)线性表示,但不可由(Ⅱ)线性表示.
答案
B
解析
解 由题设条件,存在常数k
1
,k
2
,…,k
m
使得
k
1
α
1
+k
2
α
2
+…+k
m
α
m
=β (*)
且必有k
m
≠0(否则k
m
=0,则由上式知β可由(Ⅰ)线性表示,这与已知条件矛盾).于是得
即α
m
可由(Ⅱ)线性表示.
另一方面,如果α
m
可由(Ⅰ)线性表示:
α
m
=λ
1
α
1
+λ
2
α
2
+…+λ
m一1
α
m一1
将上式代入(*)式,则得
β=(k
1
+k
m
λ
1
)α
1
+(k
2
+k
m
λ
2
)α
2
+…+(k
m一1
+k
m
λ
m一1
)α
m一1
即β可由(Ⅰ)线性表示,这与已知条件矛盾,故α
m
不能由(Ⅰ)线性表示.
综合以上两方面的结果,即知(B)正确.
本题主要考查线性表示的概念及对向量之间线性关系的推理.注意,在讨论向量之间的线性关系时,反证法是一个常用的方法.
转载请注明原文地址:https://kaotiyun.com/show/GqU4777K
0
考研数学三
相关试题推荐
中国特色社会主义法治体系,是中国特色社会主义制度的重要组成部分,本质上是中国特色社会主义制度的法律表现形式。改革开放40余年来,中国特色社会主义兴旺发达、成就非凡,中国特色社会主义法治体系发挥了重要的引领、规范和保障作用。建设中国特色社会主义法治体系是
公共生活不同于传统生活,也不同于我们的私人生活。一旦进入公共场合,就涉及“我”和他人的关系,涉及“我”的行为举止对他人的影响。公共生活的特征体现在
国家资本主义经济是在人民政府管理之下的,用各种形式和国营社会主义经济联系着的,并受工人监督的资本主义经济。它有初级形式和高级形式的区别。初级形式的国家资本主义表现为
生态文明建设是指人类在利用和改造自然的过程中,主动保护自然,积极改善和优化人与自然的关系,建设健康有序的生态运行机制和良好的生态环境。生态文明的核心是
恩格斯指出:“19世纪三大空想社会主义者的学说虽然含有十分虚幻和空想的性质,但他们终究是属于一切时代最伟大的智士之列的,他们天才地预示了我们现在已经科学地证明了其正确性的无数真理”。空想社会主义与科学社会主义的根本区别在于()。
设β,α1,α2线性相关,β,α2,α3线性无关,则().
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
下列函数在哪些点处间断,说明这些间断点的类型,如果是可去间断点,则补充定义或重新定义函数在该点的值而使之连续:
下列反常积分是否收敛?如果收敛求出它的值:
随机试题
酸碱指示剂一般是有机弱酸或有机弱碱,它们在不同pH值的溶液中呈现不同颜-色是因为()。
分层注水井全井注水量不应超过配注水量的±20%。()
在西方美学史上,提出“美是道德的象征”这一命题的美学家是()
成人常规心脏摄影,焦一片距离应为
“十二五”时期,要把符合落户条件的农业转移人口逐步转为城镇居民作为推进城镇化的()任务。
阶级矛盾和统治阶级内部矛盾的不可调和性,是警察产生的政治条件。( )
1.2013年6月22日,在柬埔寨首都金边召开的第37届世界遗产委员会会议一致审议通过中国的红河哈尼梯田文化景观列入《世界遗产名录》。红河哈尼梯田文化景观成为中国第31项世界文化遗产,中国世界遗产总数达到45项。汉文字史料记载就有1300多年以上
简述抵押权的实现。
信息系统项目完成后,最终产品或项目成果应置于(332)内,当需要在此基础上进行后续开发时,应将其转移到(333)后进行。(333)
HowtoReadEffectivelyManystudentstendtoreadbookswithoutanypurpose.Theyoftenreadabookslowlyandingreatdeta
最新回复
(
0
)