首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
某闸门的性状与大小如图所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h应为多少米?
某闸门的性状与大小如图所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h应为多少米?
admin
2018-04-14
78
问题
某闸门的性状与大小如图所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h应为多少米?
选项
答案
方法一:如图一建立坐标系,则抛物线的方程为y=x
2
。 闸门矩形部分承受的水压力 P
1
=2∫
1
h+1
ρg(h+1-y)dy=2ρg[(h+1)y-[*]]|
1
h+1
=ρgh
2
, 其中ρ为水的密度,g为重力加速度。闸门矩形下部承受的水压力 [*] P
2
=2∫
0
1
ρg(h+1-y)[*]dy-2ρg[2/3(h+1)y
5/2
-[*]y
5/2
]|
0
1
[*] 由题意知P
1
/P
2
=5/4,解得h=2,h=-1/3(舍去)。 故h=2,即闸门矩形部分的高应为2米。 方法二:如图二建立坐标系,则抛物线的方程为x=h+1-y
2
。闸门矩阵部分承受的水压力为P
1
=2∫
0
h
ρgxdx=ρgh
2
,闸门矩形下部承受水压力P
2
=2∫
h
h+1
ρgx[*]dx。 [*] 令[*]=t,得 P
2
=4ρg∫
0
1
(h+1-t
2
)t
2
dt=4ρg[(h+1)[*]]|
0
1
[*] 由题意知P
1
/P
2
=5/4,解得h=2,h=-1/3(舍去)。 故h=2,即闸门矩形部分的高应为2米。
解析
转载请注明原文地址:https://kaotiyun.com/show/HRk4777K
0
考研数学二
相关试题推荐
设函数f(x)满足关系式f"(x)+[f’(x)]2=x,且f’(0)=0,则
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0证明在[-a,a]上至少存在一点η,使。
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成。将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为103g/m3)
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成。求容器的容积;
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
曲线y=x(x-1)(2-x)与x轴所围成的图形的面积可表示为().
求微分方程xdy+(x-2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且,(φ)≠0,f(x)有间断点,则
因为x→0+时,[*]所以[*]注解该题考查等价无穷小求极限的方法,当x→0常用的等价无穷小有:(1)x~sinx~tanx~arcsinx~arctanx~ex-1~ln(1+x);(2)1-cosx~,1-cosax~(3)(1+x)a-1~a
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫-aaf(x)dx.
随机试题
汉武帝嘉其义,乃遣武以中郎将使持节送匈奴使留汉者,因厚赂单于,答其善意。(《苏武传》)
某外伤致大出血患者,出现烦躁、肢端湿冷,脉搏100次/分,脉压20mmHg。应考虑为
以下哪项不符合小儿运动发育的一般规律
下列说法中不正确的为()。
建设项目的初步可行性研究是()阶段的内容。
下列能够受到《与贸易有关的知识产权协定》保护的是______。
商业银行经营的风险性与盈利性之间是负相关关系。()
在人类社会的历史阶段中,原始社会没有警察。( )
设an=tannxdx.(1)求(an+an+2)的值;(2)证明:对任意常数λ>0,收敛.
WriteonANSWERSHEETTWOanoteofabout50-60wordsbasedonthefollowingsituation:YourfriendMikehasbeenseriouslyi
最新回复
(
0
)