在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,且b+c=10,b2+c2=一2a2+32a一78. 求证:△ABC是等腰三角形.

admin2019-08-06  24

问题 在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,且b+c=10,b2+c2=一2a2+32a一78.
求证:△ABC是等腰三角形.

选项

答案由b+c=10,b2+c2=一2a2+32a一78,得bc=a2一16a+89.构造一元二次方程x2一10x+a2一16a+89=0,则可知b,c是该方程的两个实根,于是有△=(一10)2一4·(a2一16a+89)=一4(a一8)2≥0,即(a一8)2≤0.又(a一8)2≥0,所以△=0,即b=c,所以△ABC是等腰三角形.

解析
转载请注明原文地址:https://kaotiyun.com/show/HaFq777K
0

最新回复(0)