首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于,x2∈[0,1],有
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于,x2∈[0,1],有
admin
2016-10-20
49
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于
,x
2
∈[0,1],有
选项
答案
联系f(x
1
)-f(x
2
)与f’(x)的是拉格朗日中值定理.不妨设0≤x
1
≤x
2
≤1.分两种情形: 1)若x
2
-x
1
<[*],直接用拉格朗日中值定理得 |f(x
1
)-f(x
2
)|=|f’(ξ)(x
2
-x
1
)|=|f’(ξ)||x
2
-x
1
|<[*] 2)若x
2
-x
1
≥[*],当0<x
1
<x
2
<1时,利用条件f(0)=f(1)分别在[0,x
1
]与[
2
,1]上用拉格朗日中值定理知存在ξ∈(0,x
1
),η∈(x
2
,1)使得 |f(x
2
)-f(x
2
)|=|[f(x
1
)-f(0)]-[f(x
2
)-f(1)]| ≤|f(x
1
)-f(0)|+|f(1)-f(x
2
)| =|f’(ξ)x
1
|+|f’(η)(1-x
2
)| <x
1
+(1-x
2
)=1-(x
2
-x
1
)≤[*] ① 当x
1
=0且x
2
≥[*]时,有 |f(x
1
)-f(x
2
)|=|f(0)-f(x
2
)|=|f(1)-f(x
2
)|=|f’(η)(1-x
2
)|≤[*] ②当x
1
≤[*]且x
2
=1时,同样有 |f(x
1
)-f(x
2
)|=|f(x
1
)-f(1)|=|f(x
1
)-f(0)|=|f’(ξ)(x
1
-0)|≤[*] 因此对于任何x
1
,x
2
∈[0,1]总有|f(x
1
)-f(x
2
)|<[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/HaT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
[*]
A、 B、 C、 D、 D
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
用适当方法判别下列级数的收敛性:
用向量法证明:三角形两边中点的连线平行于第三边,且长度等于第三边长度的一半.
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为_______.
防空洞的截面拟建成矩形加半圆(如图1.2—1),截面的面积为5平方米,问底宽x为多少时才能使建造时所用的材料最省?
随机试题
腺源性感染主要来源是
下列哪项是错误的()
某公司下属A、B、c三个营销网点,三个网点营销人员的情况如下:A网点有男售货员18人,其中25岁以下的4人,25—35岁之间的6人,35岁以上的8人;有女售货员30人,其中25岁以下的16人,25—35岁之间的10人,35岁以上的4人。B网点有男售货员
我国资源性国有资产管理方式目前不包括()。
记录了对多种昆虫及其生活的详细观察的著作《昆虫记》是()的作品。
领导干部具有崇高威望和巨大的感召力、凝聚力的重要条件是()。
民法调整的人身关系即是人格权关系和身份权关系。()
某些西方人鼓噪的“中国崩溃沦”的实质是
确定正数a,b,使得=2.
Itisacuriousparadoxthatwethinkofthephysicalsciencesas"hard",thesocialsciencesas"soft",andthebiologicalsci
最新回复
(
0
)