设二维随机变量(X,Y)的概率密度为 求:(I)(X,Y)的边缘概率密度fX(x),fY(y); (Ⅱ)Z=2X一Y的概率密度fZ(z).

admin2016-01-12  53

问题 设二维随机变量(X,Y)的概率密度为

求:(I)(X,Y)的边缘概率密度fX(x),fY(y);
  (Ⅱ)Z=2X一Y的概率密度fZ(z).

选项

答案(I)已知(X,Y)的概率密度,所以关于X的边缘概率密度 [*] 所以,关于Y的边缘概率密度 [*] (Ⅱ)设FZ(z)=P{Z≤z}=P{2X一Y≤z}, (1)当z<0时,FZ(z)=P{2X一Y≤z}=0; (2)当0≤z<2时,FZ(z)=P{2X—Y≤z}=[*] (3)当z≥2时,FZ(z)=P{2X一Y≤z}=1。 所以FZ(z)的即分布函数为:[*] 故所求的概率密度为:[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/HpU4777K
0

相关试题推荐
最新回复(0)