首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论函数的渐近线、升降区间、极值、凹凸性,并画出它的大致图形.
讨论函数的渐近线、升降区间、极值、凹凸性,并画出它的大致图形.
admin
2016-12-16
66
问题
讨论函数
的渐近线、升降区间、极值、凹凸性,并画出它的大致图形.
选项
答案
(1)因[*]=∞,故直线x=1是函数的铅直渐近线.又 [*] 故直线y=x+1是斜渐近线. (2)由[*]得其驻点为x
1
=3,x
2
=一1.虽然在x=1处附近一阶、二阶导数存在,且二阶导数变号,但f(x)在x=1处没有定义,因而不连续,故了没有拐点. 以y的不连续点x=1,驻点x=一1及x=3将其定义区间分为部分区间,函数在这些部分区间的变化列成下表: [*] 当x=一1时,y=x+1=0,而[*]=一2,且x=0时,y=x+1=1,y=[*]一3.因此在(一∞,1)内函数图形在渐近线y=x+1的下面. 又当x=3时,y=x+1=4,而 [*] 因而在(1,+∞)内渐近线在函数图形的下面.因此描绘函数y的大致图形如上图所示. [*]
解析
确定函数的定义域、曲线的渐近线,然后利用导数讨论函数的单调性和极值、凹向与拐点,由曲线的方程求出曲线与坐标轴交点的坐标,最后画出函数的图形.
转载请注明原文地址:https://kaotiyun.com/show/I6H4777K
0
考研数学三
相关试题推荐
求常数a、b、c的值,使函数f(x,y,z)=axy2+byz+cx3z2在点(1,-1)处沿z轴正方向的方向导数成为各方向的方向导数中的最大者,且此最大值为6
计算,其中L是:(1)抛物线y2=x上从点(1,1)到点(4,2)的一段弧;(2)从点(1,1)到点(4,2)的直线段;(3)从点(1,1)到点(1,2)再到点(4,2)的折线;(4)曲线x=2t2+t+1,y=t2+1上从点(1,1)到点(4,2
设A与B均为n,阶矩阵,且A与B合同,则().
设某商品的收益函数为R(P),收益弹性为1+P3,其中P为价格,且R(1)=1,则R(P)=_________.
设两个随机变量X与Y独立同分布,P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是().
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).事件B表示三次中出现过正面,写出B中所包含的所有可能结果;
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).写出所有可能结果构成的样本空间Ω;
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4{正面出现两次},则事件().
设n阶矩阵A与B等价,则必有
设则该幂级数的收敛半径等于_________.
随机试题
刘老师通过与班上幼儿交谈来获取其心理活动的信息。这种研究方法是()
工程咨询业应遵循的原则是()。
负债类账户的期末余额的计算公式是()。
法轮是佛教的标志之一。佛教中以法轮喻佛法摧毁一切的威力,传播佛法也叫转法轮。()
我国古代教育家颜之推指出:“人在年少,神情未定,所与款狎,熏渍陶染,言笑举动,无心於学,潜移暗化,自然似之;何况操履艺能,较明易习者也?是以与善人居,如入芝兰之室,久而自芳也;与恶人居,如人鲍鱼之肆,久而自臭也。”从德育方法来讲,这里强调的是一种(
()是阶级社会发展的直接动力。
分布式数据有六种形式,下列哪个不属于分布式数据?
在细缆连接时,T型头连接微机的一端必须直接连接网卡,中间不能再接转接连线,每个T型头间连接的最短距离为【 】m的整数倍。
WhobroughtsilktoEuropeinthethirteenthcentury?
BA0059toCapeTownBeoutofflyinghoursandmakeanarrangementBA0059toCapeTownmightbe【21】______fo
最新回复
(
0
)