首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )
admin
2016-05-31
39
问题
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )
选项
A、若Ax=0仅有零解,则Ax=b有唯一解.
B、若Ax=0有非零解,则Ax=b有无穷多个解.
C、若Ax=b有无穷多个解,则Ax=0仅有零解.
D、若Ax=b有无穷多个解,则Ax=0有非零解.
答案
D
解析
因为不论齐次线性方程组Ax=0的解的情况如何,即r(A)=n或r(A)<n,以此均不能推得
r(A)=r(A:b),
所以选项A、B均不正确.
而由Ax=b有无穷多个解可知,r(A)=r(A:b)<b.
根据齐次线性方程组有非零解的充分必要条件可知,此时Ax=0必有非零解.所以应选D.
转载请注明原文地址:https://kaotiyun.com/show/KGT4777K
0
考研数学三
相关试题推荐
马克思指出:“自由王国只是在必要性和外在目的规定要做的劳动终止的地方才开始;因而按照事物的本性来说,它存在于真正物质生产领域的彼岸。”“在这个必然王国的彼岸,作为目的本身的人类能力的发挥,真正的自由王国,就开始了。但是,这个自由王国只有建立在必然王国的基础
党的十九届二中全会审议通过了《中共中央关于修改宪法部分内容的建议》。这次修改宪法的总体要求是,高举中国特色社会主义伟大旗帜,全面贯彻党的十九大精神,坚持以马克思列宁主义、毛泽东思想、邓小平理论、“三个代表”重要思想、科学发展观、习近平新时代中国特色社会主义
使孙中山对军阀势力有了比较深刻的认识并得出“南与北如一丘之貉”的结论是因为()。
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
设α1=(2,-1,3,0),α2=(1,2,0,-2),α3=(0,-5,3,4),α4=(-1,3,t,0),则________时,α1,α2,α3,α4线性相关.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
随机试题
复式铣锥是靠外圆周的磨铣材料磨铣套管,底部钝圆尖角上面一般不铺设磨铣材料。()
关于射线束宽度的描述,错误的是
下列哪项是非必需氨基酸
患者,男性,8小时前剧烈咳嗽时,右侧腹股沟斜疝被嵌顿。护士如果观察到下列哪项说明疝发生绞窄,应做好急诊手术前准备
在民事诉讼法中,下列选项中不属于法院收集证据的情形是哪项?()
对一般附属,辅助和服务工程等项目编制工程概算时有一定实用价值的方法是______。
Theendlesspublicappearancesandshakingofhandsareaninevitablepartofanelection______.
A、Cleanthebedroom.B、Packupfortraveling.C、Waterflowers.D、Cookthemeal.A女士很主动,说:“我们现在就打扫好吗?”可知她提出打扫卧室的建议。故A项(打扫卧室)为正确答案
Thereisneveragoodtimetohaveaheartattack,butthewisepersonafflictedwithcloggingarteries(动脉堵塞)mightwanttobees
A、Women.B、Farmers.C、Men.D、Pupils.B
最新回复
(
0
)