首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. (Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (Ⅱ)设,求出可由两组向量同时表示的向量.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. (Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (Ⅱ)设,求出可由两组向量同时表示的向量.
admin
2016-03-16
77
问题
设α
1
,α
2
,β
1
,β
2
为三维列向量组,且α
1
,α
2
与β
1
,β
2
都线性无关.
(Ⅰ)证明:至少存在一个非零向量可同时由α
1
,α
2
和β
1
,β
2
线性表示;
(Ⅱ)设
,求出可由两组向量同时表示的向量.
选项
答案
(Ⅰ)因为α
1
,α
2
,β
1
,β
2
线性相关,故存在不全为零的数k
1
,k
2
,l
1
,l
2
,使k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=,即 k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
(Ⅱ)令r=k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
, A=(α
1
,α
2
,β
1
,β
2
)=[*] 则[*] 所以r=kα
1
-3kα
2
=-kβ
1
+0β
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/LMbD777K
0
考研数学二
相关试题推荐
我国传统文化特别注重人伦关系。孟子认为“明人伦”是教育的根本目的。下列不属于中国古代五大人伦关系的是()。
2006年是“十一五”的开局之年。江苏省各级卫生部门在省委、省政府的领导下,紧紧围绕富民强省、“两个率先”目标,全面落实科学发展观,重点加强基层、基础工作,大力发展农村卫生、公共卫生、社区卫生,全面推进中医药、卫生监督、科技人才建设和卫生行风建设,各项工作
A、 B、 C、 D、 C本题主要考查了图形中边的数量。第一组图形中,每个图形的线段数量全部是13,第二组中,线段数量应该全为14,所以选择C选项。
两工厂各加工480件产品,甲工厂每天比乙工厂多加工4件,完成任务所需时间比乙工厂少10天,设甲工厂每天加工产品x件,则x满足的方程为()。
关于基本粒子目前最被认可的理论是“标准理论”。它约在30年前确立,已发现的基本粒子都可以根据这一理沦进行解释。100多年来,质子、中子、电子等基本粒子陆续被发现。面对这些成绩,有人认为,宇宙问的基本粒子被发现得差不多了,即使有,也可以用现有的理论解释,因而
出租车司机王某送危重病人李某去医院,情形危急,为争取时间,王某连闯三个红灯,被交警拦截并被告知罚款,经王某解释,交警对王某未给予处罚且为其开警车引道,将李某及时送至医院。对此事件,下列哪一项表述是正确的?()
在回归方程中,假设其他因素保持不变,当X与Y相关趋近于0时,估计的标准误()
设f(χ)在[1,+∞)上连续,若曲线y=f(χ),直线χ=1,χ=t(t>1)与χ轴围成的平面区域绕χ轴旋转一周所得的旋转体的体积为V(t)=[t2f(t)-f(1)]且f(2)=,求函数y=f(χ)的表达式.
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),令向量组(Ⅰ):α1,α2,…,αn;(Ⅱ)β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则().
计算二重积分[cosx2siny2+sin(x+y)]dσ,其中D={(x,y)|x2+y2≤a2,常数a>0}.
随机试题
1958年5月1日,____________试验播出,宣告中国电视事业的诞生。
A.阻断迷走神经M胆碱受体B.抑制磷酸二酯酶C.激活腺苷酸环化酶D.保护肥大细胞溶酶体膜E.使封闭抗体增加色苷酸钠的作用机制是
可用于治疗高胆红素血症和新生儿核黄疸的药物是
关于老年人体内成分改变描述错误的是()。
不属于增感屏类型的是
夏季,某绵羊群放牧后出现食欲减退、体温升高、可视黏膜苍白等症状。剖检见肝脏肿大、出血,在腹腔和肝脏中发现扁平叶状幼虫。该病可能是()
施工组织设计的主要作用是( )。
以下关于文书校对要求的描述正确的是()。
在VisualFoxPro中,关于查询设计器和视图设计器,以下描述正确的是()。
【21】【22】
最新回复
(
0
)