首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(Ⅰ)α1,α2,α3; (Ⅱ)α1,α2,α3,α4; (Ⅲ)α1,α2,α3,α5.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α1,α2,α3,α5-α4的秩为4 .
已知向量组(Ⅰ)α1,α2,α3; (Ⅱ)α1,α2,α3,α4; (Ⅲ)α1,α2,α3,α5.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α1,α2,α3,α5-α4的秩为4 .
admin
2011-10-28
108
问题
已知向量组(Ⅰ)α
1
,α
2
,α
3
; (Ⅱ)α
1
,α
2
,α
3
,α
4
; (Ⅲ)α
1
,α
2
,α
3
,α
5
.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4 .
选项
答案
证明 因为r(Ⅰ)=r(Ⅱ)=3,所以α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,所以α
4
可由α
1
,α
2
,α
3
线性表示,即存在数λ
1
,λ
2
,λ
3
,使得 α
4
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
, 设有数k
1
,k
2
,k
3
,k
4
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
(α
5
-α
4
)=θ, 将α
4
代入上式,化简得 (k
1
-λ
1
k
4
)α
1
+(k
2
-λ
2
k
4
)α
2
+(k
3
-λ
3
k
4
)α
3
+k
4
α
5
=θ, 由r(Ⅲ)=4知α
1
,α
2
,α
3
,α
5
线性无关,所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/MJF4777K
0
考研数学三
相关试题推荐
马克思说:“每个人是手段同时又是目的,而且只有成为他人的手段才能达到自己的目的,并且只有达到自己的目的才能成为他人的手段——这种相互关联是一个必然的事实。”这句话说明()
垄断是在自由竞争中形成的,是作为自由竞争的对立面产生的。垄断条件下的竞争同自由竞争相比,具有的新特点包括()
结合材料回答问题:材料1这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件。对我们来说,这是一次危机,也是一次大考。经过艰苦努力,目前疫情防控形势积极向好的态势正在拓展。实践证明,党
“一国两制”伟大构想在实践中首先运用于解决香港问题、澳门问题。香港、澳门回归后的实践充分证明,“一国两制”是历史遗留的香港问题、澳门问题的最佳解决方案,也是香港、澳门回归后保持长期繁荣稳定的最佳制度,是行得通、办得到、得人心的。“一国两制”伟大构想(
独立自主是中华民族的优良传统,是中国共产党、中华人民共和国立党立国的重要原则,是我们党从中国实际出发、依靠党和人民力量进行革命、建设、改革的必然结论。独立自主,就是()。
设α1=(2,-1,3,0),α2=(1,2,0,-2),α3=(0,-5,3,4),α4=(-1,3,t,0),则________时,α1,α2,α3,α4线性相关.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设β,α1,α2线性相关,β,α2,α3线性无关,则().
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
随机试题
为了更好地发挥教育的作用,福禄培尔研究儿童的发展过程,将其划分为()
设intx,y,z;,从键盘输入x、y和z的值,正确的语句是()
下列不属于有效领导者具有的共同特性的是()
男,35岁,司机因车祸挤压方向盘后3小时就诊。自觉上腹部疼痛,向右肩及腰部放射、X线平片示腹膜后花斑状改变,诊断考虑为
脾破裂术前最重要的治疗措施是()
在进行投资决策时,必须要考虑投资风险。投资风险包括市场风险和公司特有风险,其中导致市场风险的因素有()。
下列行为中,属于增值税视同销售行为的有()。
加快形成现代农业生产经营组织体系需要以()为基础。
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’(0,1,-1)=________.
______nextmonth,employeeswillhavetologinonthecompanyintranetwhentheyarriveatwork.
最新回复
(
0
)