首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
It was hard to picture the semi-opaque milk in Shrek I.
It was hard to picture the semi-opaque milk in Shrek I.
admin
2022-04-28
31
问题
It was hard to picture the semi-opaque milk in Shrek I.
In Shrek, some say the most difficult shot to produce was that of a small glass of milk. By the time Shrek 2 came out in 2004, vastly improved software for rendering milk meant that the guards in the sequel went crazy for the stuff, even going so far as dumping boiling milk on a walking gingerbread man.
Milk was previously difficult to model realistically because it is translucent. In the first Shrek, it was modeled as an opaque fluid, which meant the light bounced straight off its surface, making it look like paint.
To build a realistic model of milk, in 2001, Henrik Wann Jensen at the University of California, San Diego, and colleagues added reflections from light scattering beneath the milk’ s surface. They used a technique that was later used to make Gollum’ s skin look eerily realistic in The Lord of the Rings trilogy. Now, insights gained during this progress are being put to work in the dairy industry, in the name of quality control.
To model just how light moves under the surface of a substance, Jensen specifies the substance, ability to scatter, absorb, refract and spread light. He deduces what values each property should have for a given substance by shining a spot of light onto a sample and measuring how the light intensity fades from the centre of the spot. Software then uses those properties to create a realistic model of the light moving and scattering beneath the surface.
Now Flemming Moller, a researcher at Danish food-ingredient company Danisco, is borrowing Jensen’ s technique to help determine particle sizes in drinking yogurt and to measure the size of air bubbles and ice crystals in ice cream—important for quality control and standardization. Like Jensen, he shines a spot of laser light on the yogurt or ice cream. As he has already correlated how the resulting pattern varies with particle and air bubble size, he can determine them from the shape of the spot. This allows Moller to test the products’ quality without having to sample the food invasively, something that always carries a risk of contamination. It also removes the need to dilute the samples, which is necessary for standard light-based tests.
The technique is not used routinely at Danisco but Moller hopes it will become widespread. "This work has been an eye-opener," he says. "I thought that computer graphics were very simple—you sit down and it’ s a lot of nerds. I was very surprised that there was a lot of science behind it. "
Compliments aside, Jensen has since updated the milk model so that it can be programmed to vary the sub-surface scattering and reflection according to the relative fat and protein composition of the milk. The primary light-scattering particles in skimmed milk are clumps of protein, but whole milk also contains fat globules. Jensen’ s model uses this to work out how to vary the way milk looks according to the fat and protein composition. He found that skimmed milk looks bluish, because protein molecules scatter blue light preferentially and whole milk looks white, because fat globules scatter all frequencies equally.
He can also reverse the process to determine the fat and protein content of a sample of milk—and therefore the type of milk just by shining light on it. He does this by running multiple milk simulations, tweaking the fat and protein content with each run until the optical properties of the simulated milk—and therefore the fat and protein content—match that of the real thing. Moller hopes to use the same technique to more precisely determine particle size in a sample.
Jensen believes that such models will have other applications. By measuring how pollutants affect the optical properties of seawater, a model similar to the milk model could be used to monitor and interpret changes in the oceans, he says. And a model of the atmosphere might allow changes in its composition to be tracked.
选项
A、TEUE
B、FALSE
答案
F
解析
转载请注明原文地址:https://kaotiyun.com/show/MzPd777K
本试题收录于:
公共英语五级笔试题库公共英语(PETS)分类
0
公共英语五级笔试
公共英语(PETS)
相关试题推荐
Whichofthefollowingstatementsbestdescribestheorganizationofthefirstparagraph?Accordingtothepassage,itwasonce
Dozensofcompaniesthesedaysarehawkinggenetictestingkits,whichclaimtogiveconsumersaglimpseoftheirfuturehealth.
WhichofthefollowingistheacceptabletablemannerinBritain?
Whichofthefollowingisnotaplacewheremostoriginalclassicalmusicwaswritten?
Whichofthefollowingisnotaplacewheremostoriginalclassicalmusicwaswritten?
Themovementofthesuncreatesperiodsof______.
______theclimateaffectsthefuturesustainableagriculturaldevelopment?______,______pollutioncontrolneedsthesupportof
Duringtheperiod1490~1979themainprogressmentionedinthispassagewas______.Siebe’sinventionwasnotaperfectone,be
AstunnedHollywooddebatedthefutureofoneofitsbiggeststarsSunday.Asasheriff’swatchdoglaunchedaninvestigationint
RecentsurveysshowthatJapaneseyouthhavebecomea"MeGeneration"thatrejectstraditionalvalues."Around1980manyJap
随机试题
Tobeagoodteacher,youneedsomeofthegiftsofagoodactor:youmustbeableto【C1】______theattentionandinterestofyou
患者,男,60岁。外伤后长期卧床,突发胸痛,既往无吸烟史。影像学检查显示右肺上叶纹理稀疏,透光度增强。本病可导致多种影像表现,不包括
A.下颌第一前磨牙B.下颌第二前磨牙C.上颌第一磨牙D.下颌第一磨牙E.下颌第二磨牙哪个牙的面发育沟有“H”“Y”“U”3种形态
A、氟轻松B、倍他米松C、克罗米通D、阿达帕林E、维A酸用于寻常痤疮的是
悬索桥桥荷载试验主要加载测试项目控制截面为()。
政府主管部门管理工程项目的能力非常强,采用的基本上是()。
实际工作中,企业通过对厂房进行改建、扩建而产生的支出应予以资本化。()
向员工介绍企业理念、企业文化的讲座和研讨会属于()。
由于目前缺乏相关法律支撑,城管在行使集中行政处罚权的过程中面临许多问题和困惑,目前涉及城市管理的法律法规多达50多部,但没有一部专门针对城市管理的独立法律法规,相互之间缺乏系统性和连贯性,到底该怎么管,没有一个标准,这给城管的实际工作带来诸多不便。根据文
某小型企业网的地址块是192.168.162.0/26。其中,子网192.168.162.64/26可分配的主机地址数为(30)台。
最新回复
(
0
)