9个人分78个苹果,每个人分得的数量各不相同,而且最多不超过15个,最少不能少于2个,已知第五多的人分得8个,则第八多的人分得苹果最少的情况下,分得最多的人与第六多的人分得的苹果数至多相差( )个。

admin2018-08-17  68

问题 9个人分78个苹果,每个人分得的数量各不相同,而且最多不超过15个,最少不能少于2个,已知第五多的人分得8个,则第八多的人分得苹果最少的情况下,分得最多的人与第六多的人分得的苹果数至多相差(    )个。

选项 A、7
B、8
C、9
D、10

答案C

解析 第八多的人分得苹果最少的情况是前7个人分得的苹果尽量多,而分得苹果最少的人分得的要尽可能地少,根据每个人分得的最多不超过15个,最少不能少于2个,设第六、七、八多的人分得x、y、z个,可列表如下:

前五个人和最后一人共分得了15+14+13+12+8+2=64(个),则x+y+z=14,z取大于2的最小的数,如果取3,则x+y=11,可能的组合是(7,4)(6,5);如果取4,则x+y=10,可能的组合是(6,4)(5,5)(7,3)(8,2)均不符合题意,故z最小只能是3,此时z=7,y=4或x=6,y=5。所以最多的人与第六多的人分得的苹果数至多相差15—6=9(个)。故本题答案为C。
转载请注明原文地址:https://kaotiyun.com/show/O0He777K
0

相关试题推荐
最新回复(0)