首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置.证明:r(A)≤2.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置.证明:r(A)≤2.
admin
2016-05-31
59
问题
设α,β为3维列向量,矩阵A=αα
T
+ββ
T
,其中α
T
,β
T
分别为α,β的转置.证明:r(A)≤2.
选项
答案
方法一: r(A)=r(αα
T
+ββ
T
)≤r(αα
T
)+r(ββ
T
)≤r(α)+r(β)≤2. 方法二:因为A=αα
T
+ββ
T
,A为3×3矩阵,所以r(A)≤3. 因为α,β为3维列向量,所以存在向量ξ≠0,使得 α
T
ξ=0,β
T
ξ0, 于是 Aξ=αα
T
ξ+ββ
T
ξ=0, 所以Ax=0有非零解,从而r(A)≤2.
解析
转载请注明原文地址:https://kaotiyun.com/show/OhT4777K
0
考研数学三
相关试题推荐
改革能否顺利推进,关键取决于()。
经过20多年的改革开放,到2000年,人民生活总体上达到小康水平。这是中国历史上了不起的事。但是,现在我们达到的小康只是低水平的、不全面的、发展很不平衡的小康。建设一个惠及十几亿人口的更高水平的、更全面的、发展比较均衡的小康社会,这是实现现代化建设第三步战
1842年,开放广州、厦门、福州、宁波、上海为通商口岸的条约是()。
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
判断下述命题的真假,并说明理由:
求下列函数的所有二阶偏导数:
设A与B均为n,阶矩阵,且A与B合同,则().
设n阶矩阵A的元素全为1,则A的n个特征值是________.
随机试题
前列腺肉瘤很少见,起源于生肾索的中胚层组织,包括中肾管和中肾旁管的终末部分,是一种极度恶性的肿瘤。前列腺肉瘤的病理变化正确的是:
国防科学技术研究的重要项目、成果属于()。
患者,男性,40岁,连日来在高温下工作。今日下午感头痛头晕,继而体温升高达40℃,出现颜面潮红,皮肤干燥无汗,神志模糊,急诊入院。给患者采取的护理措施中,不妥的是
目前,我国零数委托适用于()。
优先股股息在当年未足额分派时,能在以后年度补发的优先股,称为()
背景说明:你是宏远公司行政秘书高叶,下面是行政经理苏明需要你完成的工作几项任务。
教师因对学生的期待和热望而表现出更多的注意、关心和亲近,从而对学生的学习成绩产生极大影响,这是()。
未成年犯禁闭期间,每天放风两次,每次不少于()。
纯收入
FiveGoldenRulesforGivingAcademicPresentationsAcademicpresentationsaredifferentfromtheclassroompresentationsthats
最新回复
(
0
)