首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
You should spend about 20 minutes on Questions 1-13 which are based on Reading Passage 1 below. How much hig
You should spend about 20 minutes on Questions 1-13 which are based on Reading Passage 1 below. How much hig
admin
2014-08-25
29
问题
You should spend about 20 minutes on Questions 1-13 which are based on Reading Passage 1 below.
How much higher? How much faster?
Limits to human sporting performance are not yet in sight
Since the early years of the twentieth century, when the International Athletic Federation began keeping records, there has been a steady improvement in how fast athletes run, how high they jump and how far they are able to hurl massive objects, themselves included, through space. For the so-called power events – that require a relatively brief, explosive release of energy, like the 100-metre sprint and the long jump -times and distances have improved ten to twenty per cent. In the endurance events the results have been more dramatic, At the 1908 Olympics, John Hayes of the U.S. team ran a marathon in a time of 2:55:18. In 1999, Morocco’s Khalid Khannouchi set a new world record of 2:05:42, almost thirty per cent faster.
No one theory can explain improvements in performance, but the most important factor has been genetics.The athlete must choose his parents carefully’ says Jesus Dapena, a sports scientist at Indiana University, invoking an oftcited adage. Over the past century, the composition of the human gene pool has not changed appreciably, but with increasing global participation in athletics - and greater rewards to tempt athletes - it is more likely that individuals possessing the unique complement of genes for athletic performance can be identified early. Was there someone like [sprinter] Michael Johnson in the 1920s?’ Dapena asks. ’I’m sure there was, but his talent was probably never realised.’
Identifying genetically talented individuals is only the first step. Michael Yessis, an emeritus professor of Sports Science at California State University at Fullerton, maintains that ’genetics only determines about one third of what an athlete can do. But with the right training we can go much further with that one third than we’ve been going.’ Yessis believes that U.S. runners, despite their impressive achievements, are ’running on their genetics’. By applying more scientific methods, ’they’re going to go much faster’. These methods include strength training that duplicates what they are doing in their running events as well as plyo-metrics, a technique pioneered in the former Soviet Union.
Whereas most exercises are designed to build up strength or endurance, plyometrics focuses on increasing power - the rate at which an athlete can expend energy. When a sprinter runs, Yessis explains, her foot stays in contact with the ground for just under a tenth of a second, half of which is devoted to landing and the other half to pushing off. Plyometric exercises help athletes make the best use of this brief interval.
Nutrition is another area that sports trainers have failed to address adequately. ’Many athletes are not getting the best nutrition, even through supplements,’ Yessis insists. Each activity has its own nutritional needs. Few coaches, for instance, understand how deficiencies in trace minerals can lead to injuries.
Focused training will also play a role in enabling records to be broken. ’If we applied the Russian training model to some of the outstanding runners we have in this country,’ Yessis asserts, ’they would be breaking records left and right.’ He will not predict by how much, however: ’Exactly what the limits are it’s hard to say, but there will be increases even if only by hundredths of a second, as long as our training continues to improve.’
One of the most important new methodologies is biomechanics, the study of the body in motion. A biomechanic films an athlete in action and then digitizes her performance, recording the motion of every joint and limb in three dimensions. By applying Newton’s laws to these motions,’we can say that this athlete’s run is not fast enough; that this one is not using his arms strongly enough during take-off,’ says Dapena, who uses these methods to help high jumpers. To date, however, biomechanics has made only a small difference to athletic performance.
Revolutionary ideas still come from the athletes themselves. For example, during the 1968 Olympics in Mexico City, a relatively unknown high jumper named Dick Fosbury won the gold by going over the bar backwards, in complete contradiction of all the received high-jumping wisdom, a move instantly dubbed the Fosbury flop. Fosbury himself did not know what he was doing. That understanding took the later analysis of biomechanics specialists, who put their minds to comprehending something that was too complex and unorthodox ever to have been invented through their own mathematical simulations. Fosbury also required another element that lies behind many improvements in athletic performance: an innovation in athletic equipment. In Fosbury’s case, it was the cushions that jumpers land on. Traditionally, high jumpers would land in pits filled with sawdust. But by Fosbury’s time, sawdust pits had been replaced by soft foam cushions, ideal for flopping.
In the end, most people who examine human performance are humbled by the resourcefulness of athletes and the powers of the human body. Once you study athletics, you learn that it’s a vexingly complex issue,’ says John S. Raglin, a sports psychologist at Indiana University. ’Core performance is not a simple or mundane thing of higher; fasten longer So many variables enter into the equation, and our understanding in many cases is fundamental. We’ve got a long way to go.’ For the foreseeable future, records will be made to be broken.
Questions 1-6
Do the following statements agree with the information given in Reading Passage 1?
In boxes 1-6 on your answer sheet write
TRUE if the statement agrees with the information
FALSE if the statement contradicts the information
NOT GIVEN if there is no information on this
Performance has improved most greatly in events requiring an intensive burst of energy.
选项
A、真
B、假
C、NOT GIVEN
答案
B
解析
转载请注明原文地址:https://kaotiyun.com/show/PXNO777K
本试题收录于:
雅思阅读题库雅思(IELTS)分类
0
雅思阅读
雅思(IELTS)
相关试题推荐
Questionsarebasedonthefollowingdata.ForHudsonCounty,ifacirclegraphisdrawntoscaletorepresentthedistributio
Questionsarebasedonthefollowingdata.Fortheregioninwhichtherangeofthedollaramountsofthefourexpensecategor
Theboxplotabovesummarizesalistof240numbers.Whichofthefollowingstatementsmustbetrue?Indicateallsuchstatements
FOSTER:DEVELOPMENT::
Thisconfoundingissue______activistsacrosstheboard:evenwhenamovementdoeshavespecificdemandsandrecommendations,t
Witkinsrightlyarguesthatpopulationmaybedeemedavalidsustainabledevelopmentindicator—thatsustainabilitycanonly
A、Anareaofacountrysmallerthanthenationconsidersitselftobeanation.B、Aboundaryisdemarcatedaroundanationwhich
A、Migrationisinmostcasesdictatedbylifecourseeventsasopposedtotheeconomicfactorsthatcontributetothedevelopmen
MargotO’Toole’sallegationsof(i)______practicesamongherscientificcolleagues(ii)______achargeddebateregardingtheethi
Indireneedof______,thetravelersfortifiedthemselveswithfoodanddrinkinordertocompletetheirjourney.
随机试题
黑格尔在其《美学》中认为,美学是研究__________的。
血管造影证实颈动脉狭窄为程度为中至重度(50%~99%)的病人,可考虑通过不可逆结合血小板表面二磷酸腺苷(ADP)受体、抑制血小板聚集
18岁女性糖尿病患者,因进食不洁食物,引起呕吐,腹泻,次日腹泻止,但呕吐反而加剧,并进入昏迷。住院体检:呼吸深大,尿糖(++++),血糖27.7mmol/L,血钠140mmol/L,血Ph7.2。昏迷原因可能是男性68岁,2型糖尿病患者,由于病情轻,
根据症状和体征提示有胸腔积液时.需确定是否有胸腔积液应首选的检查是
口腔健康调查描述哪项是正确的
某市于2005年对市中心一平房区进行拆迁改造,该市2000年出台的城市房屋拆迁补偿指导价格在该区为4000元/m2,并且一直没有变动;2005年该区同类建筑物的重置成本达到2000元/m2,房地产市场交易价格为6000元/m2;重新规划后,开发商开发的该区
A公司2012年3月1日开始自行研发一项新一工艺,2012年3月至10月发生的各项研究、调查等费用共计100万元,2012年11月研究成功,进入开发阶段,发生开发人员工资80万元,福利费20万元,另支付租金20万元,假设开发阶段的支出有60%满足资本化条件
A公司属于矿业生产企业。当地法律要求矿产的业主必须在完成开采后将该地区恢复原貌。恢复费用包括表土覆盖层的复原。由于表土覆盖层在矿山开发前必须搬走,表土覆盖层一旦移走,企业就应为其确认一项负债,其有关费用计入矿山成本,并在矿山使用寿命内计提折旧。假定长江公司
交响诗的创始人是()。
3阶矩阵A的特征值为1,一1,0,对应的特征向量分别为α1,α2,α3,若B=A2一2A+3E,试求B-1的特征值和特征向量.
最新回复
(
0
)