某算法的时间复杂度表达式为T(n)=an2+bnlgn+cn+d,其中,n为问题的规模,a、b、c和d为常数,用O表示其渐近时间复杂度为( )。

admin2018-10-11  56

问题 某算法的时间复杂度表达式为T(n)=an2+bnlgn+cn+d,其中,n为问题的规模,a、b、c和d为常数,用O表示其渐近时间复杂度为(    )。

选项 A、O(n2)
B、O(n)
C、O(nlgn)
D、O(1)

答案A

解析 在算法分析中,符号O用于表示算法运行时间的上限。从定义上说,对一个函数g(n),O(g(n))表示函数集合:
    {(n):存在正常数c和n0,使得对所有的n≥nO,有0≤f(n)≤cg(n)}
    根据上述定义,可以知道表达式T(n)=an2+bnlgn+cn+d在函数集合O(n2)中。对此问题,简单的做法是忽略n的低阶项和最高阶项n2的常系数,故答案应为O(n2)。
转载请注明原文地址:https://kaotiyun.com/show/T64l777K
0

相关试题推荐
随机试题
最新回复(0)