首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0. 证明:(1)在(a,b)内至少存在一点ξ,使得fˊ(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,且η≠ξ,使得fˊˊ(η)=f(η
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0. 证明:(1)在(a,b)内至少存在一点ξ,使得fˊ(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,且η≠ξ,使得fˊˊ(η)=f(η
admin
2016-09-13
46
问题
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.
证明:(1)在(a,b)内至少存在一点ξ,使得fˊ(ξ)=f(ξ);
(2)在(a,b)内至少存在一点η,且η≠ξ,使得fˊˊ(η)=f(η).
选项
答案
(1)由加强型的积分中值定理知,至少存在一点c∈(a,b),使得 f(c)=[*]∫
a
b
f(x)dx=0. 设G(x)=e
-x
f(x),则G(x)在[a,b]上连续,在(a,b)内可导,且G(a)=G(b)=G((c)=0,Gˊ(x)=e
-x
fˊ(x)-e
-x
f(x)=e
-x
[fˊ(x)-f(x)].由罗尔定理知,分别存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得Gˊ(ξ
1
)=Gˊ(ξ
2
)=0,从而fˊ(ξ
1
)=f(ξ
1
),fˊ(ξ
2
)=f(ξ
2
). (2)设F(x)=e
x
[fˊ(x)-f(x)],则F(x)在[a,b]上连续,在(a,b)内可导,且F(ξ
1
)=F(ξ
2
)=0, 则 Fˊ(x)=e
x
[fˊˊ(x)-fˊ(x)]+e
x
[fˊ(x)-f(x)]=e
x
[fˊˊ(x)-f(x)]. 对F(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,即存在η∈(ξ
1
,ξ
2
),使得Fˊ(η)=0,故有 fˊˊ(η)=f(η),且η≠ξ
i
(i=1,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/URT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
证明:双曲线xy=a2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a2.
求下列曲线所围成的图形的面积:(1)ρ=asin3φ;(2)ρ2=a2cos2φ.
求下列向量场A沿定向闭曲线Γ的环流量:(1)A=-yi+xj+ck(c为常数),Γ为圆周x2+y2=1,z=0,从z轴正向看去,Γ取逆时针方向;(2)A=3yi-xzj+yz2k,Γ为圆周x2+y2=4,z=1,从z轴正向看去,Γ取逆时针方向.
当x→0时,(1-ax2)1/4-1与xsinx是等价无穷小,则z=_________.
设函数f(x)=(ex-1)(e2x-2)…(enx-n),其中n为正整数,则fˊ(0)=().
随机试题
_____________,孤舟一系故同心。(杜甫《秋兴八首》(其一))
与扩大小肠吸收表面积有关的因素是
热凝基托树脂常用的热处理方法是
腰穿的禁忌证()
2012《刑事诉讼法》新增专节规定,公安机关、人民检察院根据侦查犯罪的需要,经过严格的批准手续,可以采取技术侦查措施。而且还赋予公安机关根据侦查犯罪的需要,可以隐匿身份实施侦查和控制下交付。据此回答以下问题:下列哪些案件不属于人民检察院采取技术侦查措施
自行车采取垂直式停放时,下列有关停车位宽度和通道宽度的叙述错误的是()。
各级人民法院院长对本院已经发生法律效力的判决、裁定,发现确有错误,认为需要审的,应当提交()讨论决定。
分别从选民、政治家、官僚行为及民主制度等方面,提出了理解政府支出规模的新视角,这种财政支出规模增长的理论是()。
古埃及文学方面的成就。
Accordingtothetext,howdoesacamellook?Acamellooks______.
最新回复
(
0
)