首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
admin
2015-07-10
86
问题
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫
a
b
φ(x)dx=1.证明:∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
选项
答案
因为f"(x)≥0,所以有f(x)≥f(x
0
)+f’(x
0
)(x—x
0
). 取x
0
=∫
a
b
xφ(x)dx,因为φ(x)≥0,所以aφ(x)≤xφ(x)≤bφ(x),又∫
a
b
φ(x)dx=1,于是有a≤∫
a
b
xφ(x)dx=x
0
≤b.把x
0
=∫
a
b
xφ(x)dx代入f(x)≥f(x
0
)+f’(x
0
)(x-x
0
)中,再由φ(x)≥0,得 f(x)φ(x)≥f(x
0
)φ(x)+f’(x
0
)[xφ(x)一x
0
φ(x)], 上述不等式两边再在区间[a,b]上积分,得∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
解析
转载请注明原文地址:https://kaotiyun.com/show/WAU4777K
0
考研数学三
相关试题推荐
中共中央关于制定国民经济和社会发展第十四个五年规划和二。三五年远景目标的建议指出。布局建设综合性国家科学中心和区域性创新高地,支持()形成国际科技创新中心。
()注定是一个载入史册的不平凡的日子,我国最后9个贫困县宣布摘帽。至此。经过8年的持续奋斗,全国832个贫困县全部脱贫,现行标准下近()贫困人口实现脱贫,区域性整体贫困彻底解决。
人民代表大会制度是中国特色社会主义制度的重要组成部分,也是支撑中国国家治理体系和治理能力的根本政治制度。新形势下,我们要毫不动摇坚持人民代表大会制度,也要与时俱进完善人民代表大会制度。坚持和完善人民代表大会制度的具体要求包括
我们党坚持把马克思主义民族理论同中国民族问题具体实际相结合,创造性地制定出并不断完善民族区域自治制度。这一制度的实施有利于
居里夫人在做盐铀实验时,发现了一种与盐铀放射性接近,但化学性质却完全不同的未知元素。后来,她通过大量矿石放射性的实验证明这种未知元素的存在,又经过三年多的实验,她终于提炼出了这种新元素并将它命名为“镭”。镭的发现引起科学和哲学的巨大变革,为人类探索原子世界
民族区域自治制度是我国的一项基本政治制度。民族区域自治制度符合我国国情,其作用有()。
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
计算高斯积分其中,r=(x,xo)i+(y-yo)j+(z-zo)k,r=|r|,n是封闭曲面∑的外法向量,点Mo(xo,yo,zo)是定点,点M(x,y,z)是动点,研究两种情况:(1)Mo在∑的外部;(2)Mo在∑的内部.
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
随机试题
患儿,5岁。主因支气管肺炎入院,2小时前突然喘憋加重,口鼻周发绀,心率168次/分,呼吸65次/分,肝肋下3cm,奔马律,最可能的诊断是
电动轮椅适用于
腹痛的临床辨证,应明辨()该病例中医方剂为()
社区卫生服务的工作内容的重点是()。
上海世博电器(中国)有限公司与应运(香港)有限公司签订进口电路板组立(零部件)及不作价关键设备(未列入不予免税目录)的合同(合同期一年),升在货物进口前办妥海关备案手续。货物于2009年1月28日由KA802航班经香港运抵上海浦东机场,具境内目的地
从事期货交易活动,应当遵循公开、公平、公正和诚实信用的原则,禁止()等违法行为。
行政法的调整对象是()。
党中央明确提出,要加强数字社会、数字政府建设、提供公共服务、社会治理等数字化智能化水平。关于“数字政府”下列说法正确的是:
下列叙述中,正确的一条是
Ifd=,a=c/2,andb=3c/4,whatisthevalueofdintermsofc?
最新回复
(
0
)