设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:

admin2017-08-07  25

问题 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:

选项 A、Pα
B、P-1α
C、PTα
D、(P-1)Tα

答案B

解析 利用矩阵的特征值、特征向量的定义判定,即问满足式子Bx=λx中的x是什么向量?已知α是A属于特征值λ的特征向量,故
Aα=λα    ①
将已知式子B=P-1AP两边,左乘矩阵P,右乘矩阵P-1,得PBP-1=PP-1APP-1,化简为PBP-1=A,即
A=PBP-1    ②
将②式代入①式,得
PBP-1α=λα    ③
将③式两边左乘P-1,得BP-1α=λP-1α,即B(P-1α)=λ(P-1α),成立。
转载请注明原文地址:https://kaotiyun.com/show/XUef777K
0

最新回复(0)