首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
“寓教于乐”是把“教”的理论充分融入到人民群众_______的娱乐方式当中,通过_______,达到“润物细无声”的目的。 填入划横线部分最恰当的一项是:
“寓教于乐”是把“教”的理论充分融入到人民群众_______的娱乐方式当中,通过_______,达到“润物细无声”的目的。 填入划横线部分最恰当的一项是:
admin
2015-06-04
76
问题
“寓教于乐”是把“教”的理论充分融入到人民群众_______的娱乐方式当中,通过_______,达到“润物细无声”的目的。
填入划横线部分最恰当的一项是:
选项
A、耳熟能详,耳濡目染
B、喜闻乐见,潜移默化
C、脍炙人口,日积月累
D、司空见惯,言传身教
答案
B
解析
由“润物细无声”可知,第二空所填成语应含有无形中受到影响的意思。“日积月累”强调时间长,“言传身教”强调用言行影响、教导别人,均与句意不符,排除C、D项。第一空中,“耳熟能详”指听得多了,能够说得很清楚、很详细;“喜闻乐见”形容很受大众欢迎。与“寓教于乐”中的娱乐方式相对应,此处选“喜闻乐见”更贴切。本题答案为B。
转载请注明原文地址:https://kaotiyun.com/show/Y67e777K
0
广东
行测
地方公务员
相关试题推荐
生活中,有的人追求轰轰烈烈,总想________,只愿干所谓的大事,而对平凡之举、对有益他人的小事________;有的人只考虑自己的安逸,不顾及他人的冷暖。与典型人物境界的差距,大约就在这里。填入划横线部分最恰当的一项是()。
作为读者,要留意作者如何在作品中呈现细小的东西,要学会________细枝末节所传递的信息,一旦善于________这些细节,我们就成了老练的读者。填入划横线部分最恰当的一项是()。
《内经》理论体系的形成,是先人们在长期与疾病做斗争的生活与医疗实践中,仰观天象,俯观地理,远取诸物,近取诸身的结果。《内经》理论体系的特点,主要表现在以下三个方面。 一、从整体认识人体,强调整体的影响。《内经》认为,人是一个有机整体
某影院有四个演播大厅,A厅可容纳人数占影院可容纳总人数的,B厅的容量是A厅的。C厅可容纳人数是A厅、B厅总和的,D厅比C厅可多容纳40人。按照规定,一部影片最多只能在三个演播厅同时上映。问这个影院每次最多有多少观众能同时观看一部影片?
爱尔兰有大片泥煤蕴藏量丰富的湿地,环境保护主义者一直反对在湿地区域采煤,他们的理由是开采泥煤会破坏爱尔兰湿地的生态平衡,其直接严重后果是会污染水源。这一担心是站不住脚的。据近50年的相关统计,从未发现过因采煤而污染水源的报告。以下哪项如果为真,最
受高效节能补贴政策的刺激,加上家电下乡“末班车”效应,四季度家电营收和盈利增速或较三季度进一步好转,产量稳步增长。电冰箱方面。2012年10月份,我国生产家用电冰箱606.8万台,同比增长3.42%。1—10月总产量达7081万台,同
第三方支付是指一些和国内外各大银行签约、并具备一定实力和信誉保障的第三方独立机构提供的交易支持平台。相对于传统的资金划拨交易方式,第三方支付可以比较有效地保障交易诚信、退换要求等环节,在整个交易过程中,可以对交易双方进行约束和监督。根据上述定义,
风是地球上的一种自然现象,它是由太阳辐射热引起的。太阳照射到地球表面,地球表面各处受热不同,产生温差,从而引起大气的对流运动形成风。而我们在生活中所说的“风挺大的”、“没什么风”,谈论的是风速。风速是指空气在单位时间内流动的水平距离。根
近期国际金融危机对于毕业生的就业影响非常大,某高校就业中心的陈老师希望广大同学能够调整自己的心态和预期。他在一次就业指导会上提出,有些同学对自己的职业定位还不够准确。如果陈老师的陈述为真,则以下哪项不一定为真?Ⅰ.不是所有的人对自己的
加利福尼亚的消费者在寻求个人贷款时可借助的银行比美国其他州少,银行间竞争的缺乏解释了为什么加利福尼亚的个人贷款利率高于美国其他地区。以下哪项如果为真,最能削弱上述结论?
随机试题
被告应当在收到起诉状副本之日起()内,提供据以作出被诉具体行政行为的全部证据和所依据的规范性文件。
在Word2003中,可以将用户输入的文本直接转换为表格,其中,_________不能作为文本与文本之间的分隔。
某施工单位在建筑垃圾清运过程中沿途发生道路遗撒,则其可能面临的行政处罚是()。
多式联运单据与海运业务中使用的“联运提单”的主要区别是()
A公司2017年1月31日的资产负债表部分数据如下表所示。补充资料如下:(1)2017年2月份预计销售收入为120000元,3月份预计销售收入为140000元。(2)预计销售当月可收回货款60%,次月收回39.8%,其余的O.2%收不回来。(
广西壮族自治区()花山岩画景观已被列为世界遗产名录。
设A是n阶反对称矩阵,A*为A的伴随矩阵.(Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*为对称矩阵;(Ⅱ)举一个四阶不可逆的反对称矩阵的例子;(Ⅲ)证明:如果λ是A的特征值,那么一λ也必是A的特征值.
Whenacompanyunexpectedlyfindsitselflosingmarketshareandtakingabeatingatthehandsofitscompetitors,it’saclear
MenTooMaySufferfromDomesticViolenceNearlythreein10menhaveexperiencedviolenceatthehandsofanintimate(亲密的)
SlowHopeA)Ourworldisfullof—mostlyuntold—storiesofslowhope,drivenbytheideathatchangeispossible.Theyare’s
最新回复
(
0
)