COMETS (1) Comets are among the most interesting and unpredictable bodies in the solar system. They are made of frozen gases

admin2022-08-28  560

问题                                                 COMETS
    (1) Comets are among the most interesting and unpredictable bodies in the solar system. They are made of frozen gases (water vapor, ammonia, methane, carbon dioxide, and carbon monoxide) that hold together small pieces of rocky and metallic materials. Many comets travel in very elongated orbits that carry them far beyond Pluto. These long-period comets take hundreds of thousands of years to complete a single orbit around the Sun. However, a few short-period comets (those having an orbital period of less than 200 years), such as Halley’s Comet, make a regular encounter with the inner solar system.
    (2) When a comet first becomes visible from Earth, it appears very small, but as it approaches the Sun, solar energy begins to vaporize the frozen gases, producing a glowing head called the coma. The size of the coma varies greatly from one comet to another. Extremely rare ones exceed the size of the Sun, but most approximate the size of Jupiter. Within the coma, a small glowing nucleus with a diameter of only a few kilometers can sometimes be detected. As comets approach the Sun, some develop a tail that extends for millions of kilometers. Despite the enormous size of their tails and comas, comets are relatively small members of the solar system.
    (3) The observation that the tail of a comet points away from the Sun in a slightly curved manner led early astronomers to propose that the Sun has a repulsive force that, pushes the particles of the coma away, thereby forming the tail. Today, two solar forces are known to contribute to this formation. One, radiation pressure, pushes dust particles away from the coma. The second, known as solar wind, is responsible for moving the ionized gases, particularly carbon monoxide. Sometimes a single tail composed of both dust and ionized gases is produced, but often two tails—one of dust, the other, a blue streak of ionized gases—are observed.
    (4) As a comet moves away from the Sun, the gases forming the coma recondense, the tail disappears, and the comet returns to distant space. Material that was blown from the coma to form the tail is lost from the comet forever. Consequently, it is believed that most comets cannot survive more than a few hundred close orbits of the Sun. Once all the gases are expelled, the remaining materials—a swarm of tiny metallic and stony particles—continue the orbit without a coma or a tail.
    (5) Comets apparently originate in two regions of the outer solar system. Most short-period comets are thought to orbit beyond Neptune in a region called the Kuiper belt, in honor of the astronomer Gerald Kuiper. During the past decade over a hundred of these icy bodies have been discovered. Most Kuiper belt comets move in nearly circular orbits that lie roughly in the same plane as the planets. A chance collision between two comets, or the gravitational influence of one of the Jovian planets—Jupiter, Saturn, Uranus, and Neptune—may occasionally alter the orbit of a comet in these regions enough to send it to the inner solar system and into our view.
    (6) Unlike short-period comets, long-period comets have elliptical orbits that are not confined to the plane of the solar system. These comets appear to be distributed in all directions from the Sun, forming a spherical shell around the solar system, called the Oort cloud, after the Dutch astronomer Jan Oort. Millions of comets are believed to orbit the Sun at distances greater than 10,000 times the Earth-Sun distance. The gravitational effect of a distant passing star is thought to send an occasional Oort cloud comet into a highly eccentric orbit that carries it toward the Sun. However, only a tiny portion of the Oort cloud comets have orbits that bring them into the inner solar system.
    (7) The most famous short-period comet is Halley’s Comet, named after English astronomer Edmond Halley. [A] Its orbital period averages 76 years, and every one of its 30 appearances since 240 B.C. has been recorded by Chinese astronomers. [B] When seen in 1910, Halley’s Comet had developed a tail nearly 1.6 million kilometers (I million miles) long and was visible during daylight hours. [C] Its most recent approach occurred in 1986. [D]
Look at the four squares [ ■ ] that indicate where the following sentence could be added to the passage.
It was not until 1705, however, that Halley determined that each of these appearances was actually a reappearance of the same object.
Where would the sentence best fit?

选项

答案B

解析 本题属于插入句子题,要插入的句子意为“然而,直到1705年,哈雷才确定,每次出现的彗星都是同一颗彗星”。不难发现,第7段是依据哈雷彗星出现的时间顺序来排列的。1705年在1910年之前,故题干句子应插入A处或者B处。B处前一句说中国天文学家将每次出现的彗星都记录了下来,但是并未知道出现的彗星实际上都是同一颗。要插入的句子有一个表转折关系的连词however。正好能与前一个句子连接起来,而B处后一句也还在叙述关于哈雷彗星出现的有关内容,语义衔接紧密,故将句子插入到B处最适合、要插入的句子中的each of these appearances提示前一句会提到与these appearances相关的内容,但A处前一句并无相关内容,故不选。C处前后和D处前所阐述的时间段均已在1705年之后,先后顺序不对。
转载请注明原文地址:https://kaotiyun.com/show/Z7fO777K
0

最新回复(0)