首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是(—∞,+∞)上的连续的奇函数,且满足|f(x)|≤M,其中常数M>0,则函数是(—∞,+∞)上的[ ].
设f(x)是(—∞,+∞)上的连续的奇函数,且满足|f(x)|≤M,其中常数M>0,则函数是(—∞,+∞)上的[ ].
admin
2014-09-08
52
问题
设f(x)是(—∞,+∞)上的连续的奇函数,且满足|f(x)|≤M,其中常数M>0,则函数
是(—∞,+∞)上的[ ].
选项
A、有界偶函数
B、有界奇函数
C、无界偶函数
D、无界奇函数
答案
B
解析
因
所以,F(x)是奇函数.
对任意x∈[0,+∞),
利用F(x)是奇函数,当X∈(—∞,0)时,上面不等仍成立,这表明F(x)在(—∞,+∞)内是有界的,故正确选项为B.
故选B.
注意利用结论:“如果g(t)是连续的偶函数,则变限积分
是奇函数”来判断
是奇函数更为快捷,这是因为由题设f(x)是(—∞,+∞)上的连续奇函数,显然,
是(—∞,+∞)上的连续偶函数,因此
为奇函数.
转载请注明原文地址:https://kaotiyun.com/show/ZYZi777K
本试题收录于:
GCT工程硕士(数学)题库专业硕士分类
0
GCT工程硕士(数学)
专业硕士
相关试题推荐
ErnestHemingwaywroteashortstorycalled"TheCapitaloftheWorld."InithetellsaboutaSpanishfatherwhowantstorec
Inthepast,degreeswereveryunusualinmyfamily.Irememberthedaymyunclegraduated.Wehadahugeparty,andformanyye
在某些城市,政府不顾这些城市中很高的办公楼闲置率,还在继续进行雄心勃勃的建造计划。闲置的办公楼虽然可以租出去,但不幸的是,它们并未具备作为法院和实验室等所需设施的要求。然而,政府并不为财政浪费而内疚。下面哪个是以上的论证所依据的假设?
用蒸馏麦芽渣提取的酒精作为汽油的替代品进入市场,使得粮食市场和能源市场发生了前所未有的直接联系。到1995年,谷物作为酒精的价值已经超过了作为粮食的价值。西方国家已经或正在考虑用从谷物提取的酒精来替代一部分进口石油。如果上述断定为真,则对于那些已经用从谷物
“平反是对处理错误的案件进行纠正”。以下哪项依据能最确切地说明上述定义的不严格?()
精神与免疫系统已被证明是密切相关的,科学家们一致发现做好事有益于一个人的免疫系统,使之能产生抵抗感染所需的白血球的骨髓和连接脾脏与大脑之间的神经束,而这些都是免疫系统最重要的组成部分。最近的研究表明这些白细胞的活性可被有益的化学物质所激励,这些有益的化学物
某大学对非英语专业的基础英语教学进行了改革。英语教师可以自行选择教材,可以删掉其中部分章节,同时也可以加入他们自己选择的材料。上述改革最不利于实现下面哪项目标?
若函数y=1-2cosx-2sin2x的值域为[a,b],则b2+4a的值为()。
设函数f(x)(x∈N)表示x除以3的余数,对x,y∈N都有().(A)f(x+3)=f(x)(B)f(x+y)=f(x)+f(y)
A、 B、 C、 D、 C利用三角函数倍角公式有
随机试题
下列哪一种发热属于症状
下列肾囊肿的CT表现中错误的是
胆总管结石梗阻的典型临床表现包括
不可逆性抑制剂与酶的结合方式是
A.轻微活动即有胸闷,气急,静息心率114次/分,呼吸22次/分B.心悸,气促,心界稍扩大,心尖区可闻及Ⅱ级柔和收缩期杂音C.气急,发绀,不能平卧,肺底部持湿啰音,颈静脉充盈D.心悸,气急,心尖区可闻及Ⅲ级收缩期杂音及舒张期杂音E.心悸,气
“十一五”期间,东北老工业基地按照()的思路,紧紧围绕东北地区城镇布局等建设衔接为重点。
账套号是区别不同账套的唯一标识。()
营业税纳税人,月营业额为5万元的,可以免征营业税。()
——是作品内容和形式的高度统一与高度个性化的表现,是一个作家创作成熟的标志。
DoesSusanlivefarfromschool?
最新回复
(
0
)