(1) Virtually everything astronomers known about objects outside the solar system is based on the detection of photons-quanta of

admin2023-02-08  36

问题     (1) Virtually everything astronomers known about objects outside the solar system is based on the detection of photons-quanta of electromagnetic radiation. Yet there is another form of radiation that permeates the universe: neutrinos (中微子). With (as its name implies) no electric charge, and negligible mass, the neutrino interacts with other particles so rarely that a neutrino can cross the entire universe, even traversing substantial aggregations of matter, without being absorbed or even deflected. Neutrinos can thus escape from regions of space where light and other kinds of electromagnetic radiation are blocked by matter. Furthermore, neutrinos carry with them information about the site and circumstances of their production: therefore, the detection of cosmic neutrinos could provide new information about a wide variety of cosmic phenomena and about the history of the universe.
    (2) But how can scientists detect a particle that interacts so infrequently with other matter? Twenty-five years passed between Pauli’s hypothesis that the neutrino existed and its actual detection: since then virtually all research with neutrinos has been with neutrinos created artificially in large particle accelerators and studied under neutrino microscopes. But a neutrino telescope, capable of detecting cosmic neutrinos, is difficult to construct. No apparatus can detect neutrinos unless it is extremely massive, because great mass is synonymous with huge numbers of nucleons (neutrons and protons), and the more massive the detector, the greater the probability of one of its nucleon’s reacting with a neutrino. In addition, the apparatus must be sufficiently shielded from the interfering effects of other particles.
    (3) Portunately, a group of astrophysicists has proposed a means of detecting cosmic neutrinos by harnessing the mass of the ocean. Named DUMAND, for Deep Underwater Muon and Neutrino Detector, the project calls for placing an array of light sensors at a depth of five kilometers under the ocean surface. The detecting medium is the seawater itself: when a neutrino interacts with a particle in an atom of seawater, the result is a cascade of electrically charged particles and a flash of light that can be detected by the sensors. The five kilometers of seawater above the sensors will shield them from the interfering effects of other high-energy particles raining down through the atmosphere.
    (4) The strongest motivation for the DUMAND project is that it will exploit an important source of information about the universe. The extension of astronomy from visible light to radio waves to x-rays and gamma rays never failed to lead to the discovery of unusual objects such as radio galaxies, quasars (类星体), and pulsars (脉冲星). Each of these discoveries came as a surprise. Neutrino astronomy will doubtless bring its own share of surprises.
In the last paragraph, the author describes the development of astronomy in order to________.

选项 A、suggest the potential discovery of celestial bodies by means of neutrino astronomy
B、illustrate the importance of surprises in making astronomic discoveries
C、demonstrate the effectiveness of the DUMAND apparatus in detecting neutrinos
D、name some cosmic phenomena that neutrino astronomy will illuminate

答案A

解析 推断题。末段末句中的its own share of surprises及该句时态表明中微子天文学也将像该段第2句提到的天文学发展那样为天体的发现做出贡献,因此本题答案应为选项A。原文末段最后两句都提到了surprise一词。但没有讨论surprise对天文学的重要性是什么,因此选项B不正确;末段的重点并不是讨论DUMAND,提到DUMAND的首句只是过渡句,从上段关于DUMAND过渡到该段关于中微子天文学的内容,因此选项C不正确;该段并没有列举中微子天文学能帮助发现的天文现象,因此选项D也不正确。
转载请注明原文地址:https://kaotiyun.com/show/ZhSD777K
0

最新回复(0)