首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置,证明: (Ⅰ)秩r(A)≤2; (Ⅱ)若α,β线性相关,则秩r(A)<2.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置,证明: (Ⅰ)秩r(A)≤2; (Ⅱ)若α,β线性相关,则秩r(A)<2.
admin
2016-10-20
37
问题
设α,β为3维列向量,矩阵A=αα
T
+ββ
T
,其中α
T
,β
T
分别是α,β的转置,证明:
(Ⅰ)秩r(A)≤2;
(Ⅱ)若α,β线性相关,则秩r(A)<2.
选项
答案
1°(Ⅰ)利用r(A+B)≤r(A)+r(B)和r(AB)≤min(r(A),r(B)),有 r(A)=r(αα
T
+ββ
T
)≤r(αα
T
)+r(ββ
T
)≤r(α)+r(β). 又α,β均为3维列向量,则.r(α)≤l,r(β)≤1.故r(A)≤2. (Ⅱ)当α,β线性相关时,不妨设α=ka,则 r(A)=r(αα
T
+k
2
αα
T
)=r[(1+k
2
)αα
T
]=r(αα
T
)≤r(α)≤1<2. 2°(Ⅰ)因为α,β均为3维列向量,故存在非零列向量X与α,β均正交,即 α
T
x=0,β
T
x=0. 从而 αα
T
x=0, ββ
T
x=0,进而(αα
T
+ββ
T
)x=0. 即齐次方程组Ax=0有非0解,故r(A)≤2. (Ⅱ)因为齐次方程组α
T
x=0有2个线性无关的解,设为η
1
,η
2
,那么 α
T
η
1
=0, α
T
η
2
=0. 若α,β线性相关,不妨设β=kα,那么 β
T
η
1
=(kα)
T
η
1
=kα
T
η
1
=0, β
T
η
2
=(kα)
T
η
2
=kα
T
η
2
=0. 于是 Aη
1
=(αα
T
+ββ
T
)η
1
=0, Aη
2
=(αα
T
+ββ
T
)η
2
=0, 即Ax=0至少有2个线性无关的解,因此n-r(A)≥2,即r(A)≤1<2.
解析
转载请注明原文地址:https://kaotiyun.com/show/aeT4777K
0
考研数学三
相关试题推荐
设α1=(2,-1,3,0),α2=(1,2,0,-2),α3=(0,-5,3,4),α4=(-1,3,t,0),则________时,α1,α2,α3,α4线性相关.
证明[*]
将函数分别展开成正弦级数和余弦级数.
求下列函数在指定区间上的最大值、最小值:
设证明:f(x,y)在点(0,0)处连续且可偏导,并求出fx(0,0)和fy(00)的值.
求下列各极限:
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
已知函数试计算下列各题:(1)(2)(3)(4)
设F1(x),F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()
随机试题
分辨率是下列________设备的主要性能指标。
一群钻头就叫做群钻。()
膝关节术后为增加被动关节活动度可以进行的训练为
不属于红细胞外在异常所致的溶血性贫血是
A.第一代喹诺酮类B.第二代喹诺酮类C.第三代喹诺酮类D.第四代喹诺酮类E.第五代喹诺酮类抗革兰阳性球菌、革兰阴性杆菌(作用增强)的是
当初步设计达到一定深度,建筑结构比较明确时,可采用()编制建筑工程概算。
下列投资和费用构成项目中,属于建设项目总投资中的建设投资的是()。
在下列法的各项分类中,以法的内容作分类的是()。
WhatMakesa"MillennialMind"?(1)Since1000AD,around30billionpeoplehavebeenbornonourplanet.Thevastmajorityh
WhichofthefollowingsentencesisINCORRECT?
最新回复
(
0
)