首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置,证明: (Ⅰ)秩r(A)≤2; (Ⅱ)若α,β线性相关,则秩r(A)<2.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置,证明: (Ⅰ)秩r(A)≤2; (Ⅱ)若α,β线性相关,则秩r(A)<2.
admin
2016-10-20
39
问题
设α,β为3维列向量,矩阵A=αα
T
+ββ
T
,其中α
T
,β
T
分别是α,β的转置,证明:
(Ⅰ)秩r(A)≤2;
(Ⅱ)若α,β线性相关,则秩r(A)<2.
选项
答案
1°(Ⅰ)利用r(A+B)≤r(A)+r(B)和r(AB)≤min(r(A),r(B)),有 r(A)=r(αα
T
+ββ
T
)≤r(αα
T
)+r(ββ
T
)≤r(α)+r(β). 又α,β均为3维列向量,则.r(α)≤l,r(β)≤1.故r(A)≤2. (Ⅱ)当α,β线性相关时,不妨设α=ka,则 r(A)=r(αα
T
+k
2
αα
T
)=r[(1+k
2
)αα
T
]=r(αα
T
)≤r(α)≤1<2. 2°(Ⅰ)因为α,β均为3维列向量,故存在非零列向量X与α,β均正交,即 α
T
x=0,β
T
x=0. 从而 αα
T
x=0, ββ
T
x=0,进而(αα
T
+ββ
T
)x=0. 即齐次方程组Ax=0有非0解,故r(A)≤2. (Ⅱ)因为齐次方程组α
T
x=0有2个线性无关的解,设为η
1
,η
2
,那么 α
T
η
1
=0, α
T
η
2
=0. 若α,β线性相关,不妨设β=kα,那么 β
T
η
1
=(kα)
T
η
1
=kα
T
η
1
=0, β
T
η
2
=(kα)
T
η
2
=kα
T
η
2
=0. 于是 Aη
1
=(αα
T
+ββ
T
)η
1
=0, Aη
2
=(αα
T
+ββ
T
)η
2
=0, 即Ax=0至少有2个线性无关的解,因此n-r(A)≥2,即r(A)≤1<2.
解析
转载请注明原文地址:https://kaotiyun.com/show/aeT4777K
0
考研数学三
相关试题推荐
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设β,α1,α2线性相关,β,α2,α3线性无关,则().
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
设F(x+z,y+z)可微分,求由方程F(x+z,y+z)-1/2(x2+y2+z2)=2确定的函数z=z(x.y)的微分出与偏导数
求过点P(1,2,1)及直线和平面Ⅱ:x+2y-z+4=0的交点Q的直线方程.
写出满足下列条件的动点的轨迹方程,它们分别表示什么曲面?(1)动点到坐标原点的距离等于它到平面z=4的距离;(2)动点到坐标原点的距离等于它到点(2,3,4)的距离的一半;(3)动点到点(0,0,5)的距离等于它到x轴的距离;(4)动点到x轴的距离
问a,b为何值时,点(1,3)为曲线y=ax3+bx2的拐点?
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
随机试题
下列属于执法活动的是
关于消化性溃疡下述哪种情况为手术适应证
黄疸形成的病理过程包括哪几项
A.肥达反应B.粪便培养C.血培养D.粪便镜检E.胆汁培养
某患者系肺虚久咳病人,兼有倦怠乏力之证,医生用六君子汤治疗后好转。此法符合中医哪种治则
房地产行政主管部门通过实施()对房地产中介服务人员进行管理。
贷款银行应根据贷款种类,在()个工作日内,告诉借款单位流动资金贷款审批结果。
张某向李某借款3万元,偿还期限为15个月,但未约定利息的支付期限,且事后未达成补充协议,该借款利息应在借款到期后一并支付。()
分析下述论证中存在的缺陷和漏洞,写一篇600字左右的文章,对该论证的有效性进行分析和评论。下面是奥林匹克食品公司(加工冷冻食品)呈送给公司股东的年度报告的一部分:在此期间,加工的成本下降了,因为企业已经学会了更加有效的工作。例如,在彩色胶卷
The______murdererignoredthepleasoftheweepingvictim.
最新回复
(
0
)