首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置,证明: (Ⅰ)秩r(A)≤2; (Ⅱ)若α,β线性相关,则秩r(A)<2.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置,证明: (Ⅰ)秩r(A)≤2; (Ⅱ)若α,β线性相关,则秩r(A)<2.
admin
2016-10-20
71
问题
设α,β为3维列向量,矩阵A=αα
T
+ββ
T
,其中α
T
,β
T
分别是α,β的转置,证明:
(Ⅰ)秩r(A)≤2;
(Ⅱ)若α,β线性相关,则秩r(A)<2.
选项
答案
1°(Ⅰ)利用r(A+B)≤r(A)+r(B)和r(AB)≤min(r(A),r(B)),有 r(A)=r(αα
T
+ββ
T
)≤r(αα
T
)+r(ββ
T
)≤r(α)+r(β). 又α,β均为3维列向量,则.r(α)≤l,r(β)≤1.故r(A)≤2. (Ⅱ)当α,β线性相关时,不妨设α=ka,则 r(A)=r(αα
T
+k
2
αα
T
)=r[(1+k
2
)αα
T
]=r(αα
T
)≤r(α)≤1<2. 2°(Ⅰ)因为α,β均为3维列向量,故存在非零列向量X与α,β均正交,即 α
T
x=0,β
T
x=0. 从而 αα
T
x=0, ββ
T
x=0,进而(αα
T
+ββ
T
)x=0. 即齐次方程组Ax=0有非0解,故r(A)≤2. (Ⅱ)因为齐次方程组α
T
x=0有2个线性无关的解,设为η
1
,η
2
,那么 α
T
η
1
=0, α
T
η
2
=0. 若α,β线性相关,不妨设β=kα,那么 β
T
η
1
=(kα)
T
η
1
=kα
T
η
1
=0, β
T
η
2
=(kα)
T
η
2
=kα
T
η
2
=0. 于是 Aη
1
=(αα
T
+ββ
T
)η
1
=0, Aη
2
=(αα
T
+ββ
T
)η
2
=0, 即Ax=0至少有2个线性无关的解,因此n-r(A)≥2,即r(A)≤1<2.
解析
转载请注明原文地址:https://kaotiyun.com/show/aeT4777K
0
考研数学三
相关试题推荐
两封信随机地投入4个邮筒,求前两个邮筒没有信的概率及第一个邮筒恰有一封信的概率.
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
按两种不同次序化二重积分为二次积分,其中D为:(1)由直线y=x及抛物线y2=4x所围成的闭区域;(2)由y=0及y=sinx(0≤x≤π)所围成的闭区域;(3)由直线y=x,x=2及双曲线y=1/x(x>0)所围成的闭区域;(4)由(x-1)2+
设f(x,y)在点(0,0)的某个邻域内连续,求极限
将f(x)=arctanx展开成x的幂级数.
已知函数试计算下列各题:(1)(2)(3)(4)
计算下列各题:由方程xy=yx确定x=x(y),求.
随机试题
35周婴儿,出生体重1.0kg,生后3天体温不升,需置暖箱,该暖箱适宜的温度是
(2021年青岛联考)下列教师教学工作的五个基本环节,顺序比较合理的是()①上课,这是教学工作的中心环节②课外辅导,主要有集体和个别辅导两种形式③备课,这是上课前的准备工作,是教好课的前提④学业成绩的检查和评定⑤课外作业的布置和反馈
A、deadlineB、handsomeC、adjustD、sandwichA选项A画线字母读[d]。其他选项画线字母不发音。
肠扭转:左心衰竭导致肺脏:
坐骨切迹宽度小于5.5~6cm时,属于
双方在仲裁过程中对仲裁程序所作的下列何种约定是有效的?()。如果《补充协议》无效,刘某向法院提起诉讼,则:()。
操作风险包括战略风险,但不包括声誉风险和法律风险。()
已知某企业为开发新产品拟投资建设一条生产线,现有甲、乙、丙三个方案可供选择。甲方案的现金净流量为:NCF0=-1000万元,NCF1-7=250万元。乙方案在建设起点用800万元购置不需要安装的固定资产,税法规定残值率为10%,使用年限6年,直线法计提折旧
根据项目A和B的现金流量表。问答下面的问题:(1)计算项目A和项目B的回收期(2)假设必要回报率为5%,请用NPV法则判断,哪个项目可以接受。(深圳大学2013真题)
辩证唯物主义否定观主张否定是
最新回复
(
0
)