首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Early in the film A Beautiful Mind, the mathematician John Nash is seen sitting in a Princeton courtyard, hunched over a playing
Early in the film A Beautiful Mind, the mathematician John Nash is seen sitting in a Princeton courtyard, hunched over a playing
admin
2019-11-02
45
问题
Early in the film A Beautiful Mind, the mathematician John Nash is seen sitting in a Princeton courtyard, hunched over a playing board covered with small black and white pieces that look like pebbles. He was playing Go, an ancient Asian game. Frustration at losing that game inspired the real Nash to pursue the mathematics of game theory, research for which he eventually was awarded a Nobel Prize.
In recent years, computer experts, particularly those specializing in artificial intelligence, have felt the same fascination and frustration. Programming other board games has been a relative snap. Even chess has succumbed to the power of the processor. Five years ago, a chess-playing computer called Deep Blue not only beat but thoroughly humbled Garry Kasparov, the world champion at that time. That is because chess, while highly complex, can be reduced to a matter of brute force computation. Go is different. Deceptively easy to learn, either for a computer or a human, it is a game of such depth and complexity that it can take years for a person to become a strong player. To date, no computer has been able to achieve a skill level beyond that of the casual player.
The game is played on a board divided into a grid of 19 horizontal and 19 vertical lines. Black and white pieces called stones are placed one at a time on the grid’s intersections. The object is to acquire and defend territory by surrounding it with stones. Programmers working on Go see it as more accurate than chess in reflecting the ways the human mind works. The challenge of programming a computer to mimic that process goes to the core of artificial intelligence, which involves the study of learning and decision-making, strategic thinking, knowledge representation, pattern recognition and perhaps most intriguing, intuition.
Along with intuition, pattern recognition is a large part of the game. While computers are good at crunching numbers, people are naturally good at matching patterns. Humans can recognize an acquaintance at a glance, even from the back.
Daniel Bump, a mathematics professor at Stanford, works on a program called GNU Go in his spare time.
"You can very quickly look at a chess game and see if there’s some major issue, " he said. But to make a decision in Go, he said, players must learn to combine their pattern-matching abilities with the logic and knowledge they have accrued in years of playing.
Part of the challenge has to do with processing speed. The typical chess program can evaluate about 300, 000 positions in a second, and Deep Blue was able to evaluate some 200 million positions in a second. By midgame, most Go programs can evaluate only a couple of dozen positions each second, said Anders Kierulf, who wrote a program called SmartGo.
In the course of a chess game, a player has an average of 25 to 35 moves available. In Go, on the other hand, a player can choose from an average of 240 moves. A Go-playing computer would need about 30, 000 years to look as far ahead as Deep Blue can with chess in three seconds, said Michael Reiss, a computer scientist in London. But the obstacles go deeper than processing power. Not only do Go programs have trouble evaluating positions quickly; they have trouble evaluating them correctly. Nonetheless, the allure of computer Go increases as the difficulties it poses encourage programmers to advance basic work in artificial intelligence.
For that reason, Fotland said, "writing a strong Go program will teach us more about making computers think like people than writing a strong chess program."
Which of the following DOES NOT contribute to the complexity of programming a computer to play Go?
选项
A、Playing Go involves decision-making.
B、Playing Go involves pattern-matching.
C、The limitation of computer’s processing speed.
D、There exist too many possibilities in each move.
答案
A
解析
以下哪一要素没有构成围棋程序编写的难度?选项A错在虽然人工智能涉及了决策制订,但文中并没有提到是这一点使围棋程序编写尤其困难,以常识而言,象棋程序中也涉及决策制订。而其他选项在下文都有特别提到,用以强调围棋程序编写之难。
转载请注明原文地址:https://kaotiyun.com/show/bAbK777K
0
专业英语八级
相关试题推荐
Christmasisthetimetomakethebelovedonesfeelspecial.Ahugandakisswouldprobablybemorethanenoughbutgiftsare
Christmasisthetimetomakethebelovedonesfeelspecial.Ahugandakisswouldprobablybemorethanenoughbutgiftsare
Christmasisthetimetomakethebelovedonesfeelspecial.Ahugandakisswouldprobablybemorethanenoughbutgiftsare
Christmasisthetimetomakethebelovedonesfeelspecial.Ahugandakisswouldprobablybemorethanenoughbutgiftsare
A、BecauseitisthebestuniversityinCanada.B、Becauseithasthemostbeautifulcampusallovertheworld.C、Becausehercous
A、Itownsthemostbeautifulcampusintheworld.B、Itsscholarshipiseasytoobtain.C、Ithasproduced12Nobellaureates.D、I
TheHouseisexpectedtopassapieceoflegislationThursdaythatseekstosignificantlyrebalancetheplayingfieldforunion
TheHouseisexpectedtopassapieceoflegislationThursdaythatseekstosignificantlyrebalancetheplayingfieldforunion
TheHouseisexpectedtopassapieceoflegislationThursdaythatseekstosignificantlyrebalancetheplayingfieldforunion
PASSAGEFOURWhydidChopinlikeplayinginprivatesettings?
随机试题
图示三种应力状态(a)、(b)、(c),答案正确的是()。
背景资料:某水闸加固工程,闸室共3孔,每孔净宽为8.0m,底板坝面高程为20.0m,闸墩顶高程32,0m,坝顶以上为混凝土排架、启闭机房及公路桥。加固方案为:底板坝面增浇20cm厚混凝土,闸墩外包15cm厚混凝土,拆除重建排架、启闭机房及公路桥
甲公司为增值税一般纳税人,2016年10月20日收购免税农产品一批,支付购买价款100万元,另发生保险费8万元,装卸费4万元,途中发生1%的合理损耗,按照税法规定,购入的该批农产品按照买价11%的扣除率计算抵扣进项税额。该批农产品的入账价值为()万
注册会计师应当获取由治理层和管理层提供的所有已知关联方名称的信息,并进行复核;同时针对信息的完整性实施审计程序的有()。
有人说,高科技是爱情的杀手,那会让人少了太多“见字如面”的撕裂感。足球也是一样,过于潮流且缺少个性的_________踢法,很容易让人_________在欧盟一体化的世界里,仿佛分不清俱乐部和国家队的区别,亦找不见国家队名头背后的_________。填入划
下图中的②是由①经过2次切割而形成的立体图形,以下哪一项可以折叠成该立体图形()。
[*]
线性表的链式存储结构与顺序存储结构相比,链式存储结构的优点有()。
Advertisingmedialikedirectmail,radio,televisionandnewspapers_______toincreasethesalesofindustrialproducts.
Duringthetwentiethcentury,theUnitedStatesparticipatedintwomajorwarsthatrequiredthenationto【C1】________itsresour
最新回复
(
0
)