首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。 (Ⅰ)计算PTDP,其中 (Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。 (Ⅰ)计算PTDP,其中 (Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
admin
2015-09-14
73
问题
设
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。
(Ⅰ)计算P
T
DP,其中
(Ⅱ)利用(Ⅰ)的结果判断矩阵B—C
T
A
-1
C是否为正定矩阵,并证明你的结论。
选项
答案
[*] (Ⅱ)矩阵B一C
T
A
-1
C是正定矩阵。证明如下: 由(Ⅰ)的结果可知,矩阵D合同于矩阵 [*] 又D为正定矩阵,可知矩阵M为正定矩阵。 因矩阵M为对称矩阵,故B一C
T
A
-1
C为对称矩阵。对[*]及任意的Y=(y
1
,y
2
,…,y
n
)
T
≠0,由M正定,有 [*] 即Y
T
(B—C
T
A
-1
C)Y>0.故B—C
T
A
-1
C为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/cqU4777K
0
考研数学三
相关试题推荐
党的政治建设为党的建设提供了一个可衡量、可检验的标准。党的建设成效如何、成功与否,党的组织和党员队伍建设得强不强、好不好,首先就要用政治标准和政治建设成效来检验、来衡量。下列关于党的政治建设的正确认识是
判断认识是不是真理,要看它
疫情紧急,防疫物资呈现紧张短缺局面。我们呼吁各地医疗物资生产企业要抓紧时间恢复生产,保证物资供应充足。同时,我们也呼吁和鼓励各级政府向积极恢复生产的单位提供一些政策优惠,调动企业的主动性和积极性。疫情当前,需要“市长”,也需要市场。市场和“市长”一起配合,
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设α1=(2,-1,3,0),α2=(1,2,0,-2),α3=(0,-5,3,4),α4=(-1,3,t,0),则________时,α1,α2,α3,α4线性相关.
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设A与B均为n,阶矩阵,且A与B合同,则().
随机试题
体温持续高达39.5℃,24h内波动范围<1℃。此热型是()
国家药品标准包括
对于循环冷却水水质处理,要解决的问题是使系统达到()。
某公司拥有资本200万元,其中债务资本占40%,利息率为10%,息税前利润为20万元,固定成本为20万元。要求:计算营业杠杆系数、财务杠杆系数和复合杠杆系数。
2010年3月,某企业将闲置资金1.0万元存入法定具有吸收存款职能的某机构,后因客观原因该机构依法破产,导致企业尚有30万元无法收回。该企业将30万元确认为存款损失时应提供的证据有()。
研究课题的来源主要有()。
汇总记账凭证账务处理程序的适用范围是()。
小学生心理发展的特征包括()。
设函数f(x),g(x)具有二阶导数,且g”(x)<0.若g(x0)=a是g(x)的极值,则f[g(x)]在x0取极大值的一个充分条件是()
A、Theproblemofthecity.B、Himselfandhisproblems.C、Thingshehadplannedtosaytohisaudience.D、Theplanforhisfuture
最新回复
(
0
)