首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)为区间[0,1]上的非负连续函数. (1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积; (2)设f(x)在(0,1)内可导,且,证明(1)中的
设y=f(x)为区间[0,1]上的非负连续函数. (1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积; (2)设f(x)在(0,1)内可导,且,证明(1)中的
admin
2015-06-26
109
问题
设y=f(x)为区间[0,1]上的非负连续函数.
(1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
(2)设f(x)在(0,1)内可导,且
,证明(1)中的c是唯一的.
选项
答案
(1)S
1
(c)=cf(c),S
2
(c)= ∫
c
1
f(t)dt=一∫
1
c
(t)dt,即证明S
1
(c) S
2
(c),或cf(c)+ ∫
1
c
f(t)dt=0.令φ(x)=x∫
1
x
f f(t)dt,φ(0)=φ(1)=0,根据罗尔定理,存在c∈ (0,1),使得φ’(c)=0,即cf(c)+ ∫
1
c
f(t)dt=0,所以S
1
(c)=S
2
(c),命题得证. (2)令h(x)=xf(x)一∫
x
1
(f)dt,因为h’(x)=2f(x)+xf’(x)>0,所以h(x)在[0,1]上为单调函数,所以(1)中的f是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/eXU4777K
0
考研数学三
相关试题推荐
“一个党,一个国家,一个民族,如果一切从本本出发,思想僵化。迷信盛行,那它就不能前进,它的生机就停止了。就要亡党亡国。”这段话深刻阐明了
党的十九大报告指出,发展的根本目的是()
在一切社会里,社会财富的物质内容都是由
生产力的发展状况集中表现在( )
()事件,是用来描述非常态事件的概念,这类事件在一定范围内普遍存在,破坏力较强,发生的概率较大,可以推测其概率分布,但不知道何时会发生。
2021年10月13目,2020年联合国生物多样性大会(第一阶段)高级别会议正式通过“昆明宣言”。宣言承诺,确保制定、通过和实施一个有效的“2020年后全球生物多样性框架”,以扭转当前生物多样性丧失趋势并确保最迟在()年使生物多样性走上
下列各函数均为x→0时为无穷小,若取x为基本无穷小,求每个函数的阶:
设z=z(x,y)是由方程x2+y2-z=φ(x+Y+z)所确定的函数,其中φ具有二阶导数,且φ’≠-1.(I)求dz;
求f(x,y,z)=2x+2y—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2):1,则f"’(2)=_________.
随机试题
超支的业务招待费应计入()。
医院感染办公室检查临床科室器械消毒灭菌情况,问哪种消毒方法效果最差,李医生的回答是
A.凉血、滋阴B.凉血、定惊C.凉血、止痢D.凉血、透疹E.凉血、清肝水牛角的功效是
双代号最早时标网络图中箭线末端(箭头)对应的标值为()
某企业计划年度产品销售收入21600千元,流动资金平均占用额为5400千元,该企业流动资金周转天数为()天。
查看信用报告的用户要登记注册,但计算机系统并不记录每一笔信用报告的查询操作。()
巴纳德认为,组织存在的基本条件是()。
下列行为中属于侵犯肖像权的是()。
滨海市对重点中学组织了一次物理统考,并生成了所有考生和每一个题目的得分。市教委要求小罗老师根据已有数据,统计分析各学校及班级的考试情况。请根据考生文件夹下“素材.xlsx”中的数据,帮助小罗完成此项工作。具体要求如下:新建“按学校汇总2”工作表,将“按
TheconqueringEuropeansdisplacedtheAborigines,killingmany,drivingothersfromtheirtraditionaltribal]ands,andeventua
最新回复
(
0
)