首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
It’s Hard to Clean Big Data A)Karim Keshayjee, a Toronto physician and digital health consultant, crunches mountains of data fro
It’s Hard to Clean Big Data A)Karim Keshayjee, a Toronto physician and digital health consultant, crunches mountains of data fro
admin
2014-12-26
44
问题
It’s Hard to Clean Big Data
A)Karim Keshayjee, a Toronto physician and digital health consultant, crunches mountains of data from 500 doctors to figure out how to improve patient treatment. But it’ s a frustrating slog to get a computer to decipher all the misspellings, abbreviations, and notes written in unintelligible medical shorthand.
B)For example, "smoking information is very hard to parse," Keshayjee said. "If you read the records, you understand right away what the doctor meant. But good luck is trying to make a computer understand. There’s ’never smoked’ and ’smoking = 0.’ How many cigarettes does a patient smoke? That’ s impossible to figure out."
C)The hype around slicing and dicing massive amounts of data, or big data, makes it sound so easy: Just plug a library’ s worth of information into a computer and wait for valuable insights to pour out about how to speed up an auto assembly line, get online shoppers to buy more sneakers, or fight cancer. The reality is much more complicated. Data is inevitably "dirty" thanks to obsolete, inaccurate, and missing information. Cleaning it up is an increasingly important and overlooked job that can help prevent costly mistakes.
D)Although techniques are improving all the time, scrubbing data can only accomplish so much. Even when dealing with a relatively tidy set of information, getting useful results can be arduous and time-consuming. "I tell my clients that the world is messy and dirty," said Josh Sullivan, a vice president at business consulting firm Booz Allen who handles data crunching for clients. "There are no clean data sets."
E)Data analysts start by looking for information that’ s out of the norm. Because the volume of data is so huge, they typically hand the job over to software that automatically sifts through numbers and text to look for anything unusual that needs further review. Over time, computers can improve their accuracy in spotting what’ s belongs and what doesn’t. They can also better understand what words and phrases mean by clustering similar examples together and then grading their interpretations for accuracy. "The approach is easy and straightforward, but training your models can take weeks and weeks," Sullivan said.
F)A constellation of companies offer software and services for cleaning data. They range from technology giants like IBM IBM -0.24% and SAP SAP 0.12% to big data and analytics specialists like Cloudera and Talend Open Studio. A legion of start-ups is also trying to get a toehold as data janitors including Trifacta, Tamr, and Paxata.
G)Healthcare, with all its dirty data, is one of the toughest industries for big data technology. Electronic health records make medical information increasingly easy to dump into computers, but there’ s still a lot room for improvement before researchers, pharmaceutical companies and hospital business analysts can slice and dice all the information they want.
H)Keshavjee, the doctor and CEO of InfoClin, a health data consulting firm, spends his days trying to tease out ways to improve patient treatment by sifting through tens of thousands of electronic medical records. Obstacles pop up all the time.
I)Many doctors neglect to note a patient’ s blood pressure in their medical records, something that no amount of data cleaning can fix. Simply determining what ails patients—based on what’ s in their files—is surprisingly difficult for computers. Doctors may enter the proper code for diabetes without clearly indicating whether it’ s the patient who has the disease or a family member. Or they may just enter "insulin" without mentioning the underlying diagnosis because, to them, it’ s obvious.
J)Physicians also use a lot of idiosyncratic shorthand for medications, illnesses and basic patient details. Deciphering it takes a lot of head scratching for humans and is nearly impossible for a computer. For example, Keshavjee came across one doctor who used the abbreviation"gpa." Only after coming across a variation, "gma," did he finally solve the puzzle—they were shorthand for "grandpa" and "grandma."?"It took a while to figure that one out," he said.
K)Ultimately, Keshavjee said one of the only ways to solve the problem of dirty data in medical records is "data discipline." Doctors need to be trained to enter information correctly so that cleaning up after them is less of a chore. Incorporating something like Google’ s helpful tool that suggests how to spell words as users type them would be a great addition for electronic medical records, he said. Computers can learn to pick out spelling errors, but minimizing the need is a step in the right direction.
L)Another of Keshavjee’ s suggestions is to create medical records with more standardized fields. A computer would then know where to look for specific information, reducing the chance of error. Of course, doing so is not as easy as it sounds because many patients suffer from multiple illnesses, he said. A standard form would have to be flexible enough to take such complications into account.
M)Still, doctors would need to be able to jot down more free-form electronic notes that could never fit in a small box. Nuance like why a patient fell, for example, and not just the injury suffered, is critical for research. But software is hit and misses in understanding free-form writing without context. Humans searching by keyword may do a better job, but they still inevitably miss many relevant records.
N)Of course, in some cases, what appears to be dirty data, really isn’t. Sullivan, from Booz Allen, gave the example the time his team was analyzing demographic information about customers for a luxury hotel chain and came across data showing that teens from a wealthy Middle Eastern country were frequent guests. "There were a whole group of 17 year-olds staying at the properties worldwide,’ Sullivan said. "We thought, ’ That can’ t be true.’ "
O)But after some digging, they found that the information was, in fact, correct. The hotel had legions of young customers that it didn’t even realize were there, and had never done anything to market to them. All guests under 22 were automatically logged as "low-income" in the company’s computers. Hotel executives had never considered the possibility of teens with deep pockets.? "I think it’s harder to build models if you don’t have outliers," Sullivan said.
P)Even when data is clearly dirty, it can sometimes be put to good use. Take the example, again, of Google’ s spelling suggestion technology. It automatically recognizes misspelled words and offers alternative spellings. It’s only possible because Google GOOG -0.34% has collected millions and perhaps billions of misspelled queries over the years. Instead of garbage, the dirty data is an opportunity.
Q)Ultimately, humans, and not machines, draw conclusions from the data they crunch. Computers can sort through millions of documents, but they can’ t interpret the findings. Cleaning data is just one of step in a long trial and error process to get to that point. Big data, for all its hype about its ability to lift business profits and help humanity, is a big headache. "The idea of failure is completely different in data science," Sullivan said. "If they don’t fail 10 or 12 times a day to get to where they should be, they’re not doing it right."
To create medical records with more standardized fields can reduce the chance of data errors.
选项
答案
L
解析
题干意为在电子病历中设置更多标准化的域可以减少数据出错率。根据题干中的 “medical records with more standardized fields”可定位至L段前两句“Another of Keshavjee’s suggestions is to create medical records with morestandardized fields. A computer would then know where to look for specific information.reducing the chance of error.”,题干是对这两句部分内容的改写。
转载请注明原文地址:https://kaotiyun.com/show/eoh7777K
0
大学英语六级
相关试题推荐
Formostofhumanhistory,theprimarymeansofcommunicationacrosslongdistanceswasnotthecomputer,telephoneor(36)______
A、Howprivatelanguagesaredeveloped.B、Howancientpeoplecreatedlanguages.C、Theassociationsbetweendifferentlanguages.D
A、Climbingmountains.B、Walkinginthemeadow.C、Playingbaseball.D、Playingtennis.D细节题。文中提到,John在保持良好成绩的同时,还总是找时间踢足球或打网球(play
Americansareahighlymobilepeople.Whatfactorscausethemtomove?The(36)______foreconomicbettermentisgenerallythemos
A、Hisbossassignedhimtodoaverydifficultproject.B、Hefindsithardtofulfilltheworkbeforethedeadline.C、Hedoesn’t
Lastweek,speakersataprograminWashingtondiscussedusingnanotechnology(纳米技术)toimprovehealthcareindevelopingcountrie
Themobilephoneissettobecomeoneofthecentraltechnologiesofthe21stcentury.Withinafewyears,themobilephonewill
"Nothingraisesmorefearinarepressivegovernmentthanchallengestothecontrolofinformation.Andnothingismoreimportan
A、WearaT-shirtfortwodays.B、Takeactivitiestosweat.C、Producestrongsmells.D、Stoptakinganyactivities.A细节题。文中明确提到,科学
Themost【B1】______problemcreatedbytherapidincreaseinpopulationisa【B2】______offood.Moremouthshavetobe【B3】______eve
随机试题
深刻认识党面临的精神懈怠危险、能力不足危险、()、消极腐败危险的尖锐性和严峻性,坚持问题导向,保持战略定力,推动全面从严治党向纵深发展。
分离沸点较高又是热敏性混合液时精馏操作应采用()。
胰腺癌最常见的首发症状是
患者,男性,54岁,车祸,右胫腓骨中1/3粉碎骨折,复位后夹板固定,因右小腿肿胀足趾剧烈疼痛伤后36小时转诊,检查:右足趾明显肿胀,青紫,感觉麻木,足趾活动差,毛细血管充盈尚存在,取除夹板见右小腿肿胀甚,皮温较高且皮肤有水泡出现,考虑并发最可能为
【2014.河北石家庄】在权威命令、社会舆论或群体气氛的压力下,放弃自己的意见而采取与大多数人保持一致的行为称之为()。
供认,在司法人员进行讯问时,罪犯或嫌疑人承认自己犯了罪,并供述有关犯罪的事实真相。下列()项不属于供认。
我们的读书人大多是一些临近高考的孩子,或者说是一些攻研或攻博的年轻人。在他们阅读的时候,有一个最显著的特征,脸上都带上了“最后一搏”的庄严,是总攻,是______,是________,仿佛赌徒手中最后的一个筹码。等筹码压出去之后,放下图书,立地成佛。依次填
SQLServer2008允许用户自己定义函数。关于内联表值函数,有下列说法:Ⅰ.在内联表值函数中,没有相关联的返回变量Ⅱ.内联表值函数通过INSERT语句填充函数返回的表值Ⅲ.内联表值函数的作用类似于带参数的视图
若有代数式,(其中e仅代表自然对数的底数,不是变量),则下列能够正确表示该代数式的C语言表达式是()。
Havingbeenbadlydamagedbytheearthquake)thecityhastobe(rebuild)______.
最新回复
(
0
)